
This book would not be possible without your Patreon support.

Support me on Patreon, for only $1/month and get *all of my books for free.

www.patreon.com/js tut

(Sign up to get *all of my the books including all future releases! But also if you
want to support my mission to give away $1,000,000 in product value for free to
entire #100daysofcode community by end of 2019, including you!)

Title: Node.js – Server Setup
Edition: I – XXXXX XX, 2019
Genre: Software
Publisher: Learning Curve Books
Imprint: Independently published
ISBN: Not Yet Available
Author: Greg Sidelnikov (greg.sidelnikov@gmail.com)

Editors, volunteers, contributors: Grace Neufeld.

Primary purpose of Learning Curve Books publishing company is
to provide effective education for web designers, software engineers and all readers
who are interested in being edified in the area of web development.

This edition of Node.js – Server Setup was created to speed up the learning
process of setting up the JavaScript-based Node server for building your own
applications.

For questions and comments about the book you may contact the author or send
an email directly to our office at the email address mentioned below.

Special Offers & Discounts Available
Schools, libraries and educational organizations may qualify for special prices.
Get in touch with our distribution department at hello@learningcurvebook.net

Learning Curve Books is trademark of Learning Curve Books, LLC – an in-
dependent book publisher. License is required to distribute this volume in any
form regardless of format. All graphics and content is copyright of Learning Curve
Books, LLC. unless where otherwise stated.

©2018 – 2019 Learning Curve Books, LLC.

Node.js

1 bash.exe 1

1.1 Migrating From Apache to Node 2

1.2 Node Libraries and Frameworks 2

1.3 Running Node Server . 2

2 Installation 3

2.1 Mac . 4

2.1.1 apt install nodejs . 4

2.2 Windows . 5

2.3 Installing Node on Windows . 5

2.4 Configuring Node Server Globally 7

2.5 Enable Node To Run From Any Directory 9

2.6 Exit from Node . 11

2.7 Congratulations! . 11

3 Running Applications 13

3.1 Project Home Directory . 14

3.2 Running a file via Node . 14

3.3 The process Object . 16

NODE.JS

3.4 Adding Packages To index.js . 17

3.5 Next Steps . 18

3.6 Running Application Server Continuously 19

3.7 Congratulations! . 20

3.8 Serving Files Continuously . 22

4 Building The API 25

4.1 Building Endpoint API . 26

4.1.1 Integrating API class into our server 27

4.2 Install NPM MySQL Module . 28

4.2.1 Installing MySQL Server 28

5 Setting Up MySQL Server 29

5.0.1 Install MySQL Server Locally on Windows 29

5.0.2 Install MySQL Server on Ubuntu 30

5.0.3 Show Existing Databases 33

5.0.4 Creating A New Database 34

5.0.5 Creating A New MySQL User 35

5.0.6 Make MySQL Open For Remote Access 36

5.1 Table Specimen . 40

5.1.1 Bird’s Eye View . 42

6 Adding MySQL to api.js 43

6.1 Asynchronous Back-End Problem 45

6.2 Nesting Queries . 46

6.3 Handling Many Connections . 46

6.4 Executing A MySQL Query . 49

NODE.JS

6.4.1 Promises . 49

6.4.2 The Round-trip Pattern 50

6.4.3 MySQL Promise Function 51

6.5 Endpoint API Architecture . 52

6.6 Helper Functions . 53

6.7 Sending POST Data To API Endpoint 55

6.8 Streaming POST Data . 56

6.9 Complete Source Code . 59

7 Building Scallable Applications 61

7.1 Moving To RAM . 62

7.2 Handle Server Clean Up . 62

7.3 Master and Stage Servers . 63

NODE.JS

What Is A Server?

Just like a server at a restaurant serving a meal, a computer server is something
that serves files over the network via a dedicated IP address.

For many people server setup and configuration are some of the least exciting parts
about being a software developer.

To those who have propensity toward back-end development, it might be the holy
grail of how the application actually works.

To front-end developers, it’s a black box that generates console errors.

If you want to work for a start-up company as a back-end engineer, having deep
knowledge of how servers work is required experience. But even if you are a front-
end developer, knowing how to set up a server will expand your skill set and might
increase chances of getting that software job you want. It can only be a plus.

In this day and age it is not uncommon for front-end developers to know how to
work with servers. You’re only gaining if you learn how to set up your own server.

I also think that servers can be exciting for those with entrepreneurial mindset –
it gives you the power to build your own custom applications. Nothing is more
thrilling than having ability to launch the child of your imagination into the world.

But all deep knowledge starts with getting familiar with the fundamentals.

Node Server

Setting up a Node server can be broken into three parts: 1] installation, 2]
adding modules and other dependencies using a manifest file, and 3] writing the
minimum required code in main index.js file to launch and run the server.

In this book we will go through each step explaining everything you need to know
to get started with 0 knowledge from absolute scratch.

This book contains examples you can simply copy and paste into Terminal on
Mac or cmd on Windows, but I encourage you to type them in manually. It’s the
only way to get better at the command line – the skill that makes you a much
more productive software developer.

You might need to get a web host to deploy your server online but the process is the
same on localhost as it is elsewhere. It’s just the hosted solution will additionally
route your server’s localhost environment to your browser via IP address.

Chapter 1

bash.exe

Did you know that starting with Windows 10 you can work in Linux bash directly
from your Windows computer? There is a bash.exe you can run:

Figure 1.1: Running Linux ls (list directory contents) command on Windows.

You can run any Linux command on Windows this way.

In this book we will explore installing Node on Mac, Windows and Linux.

The rest of commands like npm install package name (to install a node package
with Node Package Manager) or node index.js (to run index.js on Node server)
are the same on all operating systems.

1

2 CHAPTER 1. BASH.EXE

1.1 Migrating From Apache to Node

Many people are still working with PHP servers. I love Apache and PHP but hate
to say that this setup is becoming obsolete. There are good reasons for this. Node
servers are used by companies to run libraries like React, which speeds development
of the UI components by a large %, but Node is better even for solo developers.

In the past you dispatched jQuery.ajax or fetch calls to scripts written in PHP.
This means that just to perform a simple action, you had to know two languages!

Having JavaScript on both front and back-end is magical. Also, Node is generally
much faster than an Apache/PHP server. Once you set up a Node server and
build your first application, you will never want to go back.

1.2 Node Libraries and Frameworks

It’s tempting to just install a library or a framework with one command in Terminal
or cmd (on Windows) and watch your application magically appear in your browser
at localhost or a dedicated IP address.

But that is neither learning nor gaining experience. When errors creep up, you
may not understand what hit you.

In this book, we will walk through the process step by step, without the help of
unnecessary modules, libraries of frameworks.

If we can only narrow down on what the key issues are and avoid common pitfalls,
I think the process of setting up a server can be fun and exciting!

1.3 Running Node Server

There is really one way of running a node server, regardless of whether you are
doing it on localhost or on a hosted cloud server. If you learn how to set it up on
localhost, you will know how to set it up elsewhere. The process is identical.

We’ll go through both cases, including the minimum web hosting server setup.

Chapter 2

Installation

There are 3 things you should worry about when installing a Node server:

1. Choosing to install Node globally on your Operating System or making it local
to a project directory on your hard drive. We’ll take a look at which way is better.

2. Configuring package.json manifest file – it is automatically created by Node
installation, but it’s nice to know how it actually works, so we’ll break it down.

3. Understanding node modules – the default directory where all Node modules
are downloaded when you install them from command line.

If you can understand these 3 key things about Node server, you’re making a huge
step toward getting better at back-end development with JavaScript. So we’ll take
a look at each one in the remainder of this book.

3

4 CHAPTER 2. INSTALLATION

2.1 Mac

You might want to start learning how to install programs from the command line.

Mac & Linux may have different program installation managers. On OSX you
generally use brew, yum or port (See macports.org) command. On Linux it’s
either apt-get or more commonly just apt. Your should probably use apt.

The reason for so many ways to install packages on Linux-based OS’es is due to
many open-source distributions (Debian, Ubuntu, Fedora, Arch, CentOS...etc.,)
each in own unique flavor and version history.

Technically, you can also use apt on Mac OSX, if it’s available. (It should be.)

If you already have apt but you want brew – which some find to be better – on
your OSX, run apt install linuxbrew-wrapper

Now you can use brew to install packages such as nodejs, for example:

Just run brew install nodejs to install Node in Terminal on OSX.

To do the same on Linux use apt-get install nodejs in bash.

Or simply apt install nodejs in bash. There are minor differences between apt
and apt-get, you can use either one. But apt is considered better.

You can also try apt install nodejs in bash. And this is my preferred way.

2.1.1 apt install nodejs

On Linux-based systems these commands install a package or program locally on
your computer, much like running a GUI-based installer on Windows.

All that happens is locating, downloading and copying program files to a directory
on your hard drive.

After installation of packages such as nodejs and mysql you usually have to
configure and run them. We’ll go over the process in this book!

2.2. WINDOWS 5

2.2 Windows

To get started on Windows, hold Window-key and press R.

Type cmd and hit Enter in the box that appears.

The command line window will open, and it looks similar to this:

To see if node is already installed, type node and hit Enter:

In this case I don’t have node installed, so let’s get started!

2.3 Installing Node on Windows

Some older laptops or PCs might still be 32 bit. So, if you’re not sure, run the
following command in the cmd window: wmic os get osarchitecture

6 CHAPTER 2. INSTALLATION

Figure 2.1: Running: wmic os get osarchitecture

Looks like my computer is 64-bit, just as I thought!

To install Node on Windows, first head over to the official Node website:

Figure 2.2: URL: https://nodejs.org/en/download/

Just choose Window Installer and 32-bit or 64-bit version. I chose 64-bit one,
because my computer is 64-bit. Yours is too, most likely.

Figure 2.3: Click on the downloaded file (I am using Chrome browser here.)

This will begin the Windows installation process. Just click Next everywhere.

2.4. CONFIGURING NODE SERVER GLOBALLY 7

Figure 2.4: I chose default path C:\Program Files\nodejs

2.4 Configuring Node Server Globally

Sometimes you want to be able to call node command from any location on your
hard drive. Many developers do this because they want to run node command
from anywhere on their hard drive. Just like I did in the previous example.

So now that we installed Node with the Windows installer, we should be able to
run node command from command line, right?

Wrong.

We still can’t launch node globally.

8 CHAPTER 2. INSTALLATION

In order to run the node command, you have to be in the directory in which Node
was installed, because that’s where node.exe executable file is.

Earlier we installed node into C:\Program Files\nodejs

Navigate to that directory by typing: cd C:\Program Files\nodejs

Now that we’re there, execute node command:

Your cursor will turn to right bracket >

This means node server is running and awaiting your JavaScript code!

Type console.log(”Hello there.”), to see that Node server works (almost) just like
your regular JavaScript console in Chrome. That’s because Node server runs on the
same JavaScript engine (V8) used in Chrome (with just a few minor distinctions.)

This means that we can launch node and execute JavaScript code. You can
feed node an index.js file to execute, instead of typing the code live in the cmd
program. We’ll take a look at that in just a moment.

2.5. ENABLE NODE TO RUN FROM ANY DIRECTORY 9

2.5 Enable Node To Run From Any Directory

In previous section we ran some JavaScript code on an instance of a node server.

But if you create new projects, it’s likely they will be located in different folders
like C:\develop\my app and as we had just seen we cannot run node outside of
its installation folder by default.

The solution is to include path to node.exe to your Environment Variables.

Figure 2.5: Running: rundll32 sysdm.cpl,EditEnvironmentVariables

Running command rundll32 sysdm.cpl,EditEnvironmentVariables will crack
open Windows system variable editor:

Figure 2.6: Upper half of Environment Variables window.

10 CHAPTER 2. INSTALLATION

In the upper box of Environment Variables window (where it says user variables
for YourUserName) click on Path and click Edit... button.

In next window, click New and type C:\Program Files\nodejs on a new line:

Figure 2.7: Upper half of Environment Variables window.

Click OK, then click OK again on underlying window.

That’s it! Now we can run node from anywhere on the hard drive:

Figure 2.8: Now you can run node from anywhere.

Type node then type console.log(”Node Anywhere.”) and watch output.

The function console.log returns undefined because it is not an expression.
If you want to learn more about JavaScript, check out JavaScript Grammar
(www.javascriptgrammar.com) for a free copy.

2.6. EXIT FROM NODE 11

2.6 Exit from Node

After entering some JavaScript, we’re still stuck in Node.

To exit, hold Ctrl and press C key two times in a row.

2.7 Congratulations!

You have just installed Node on your computer.

12 CHAPTER 2. INSTALLATION

Chapter 3

Running Applications

So far we only installed a dormant node.exe on the hard drive.

But how do we actually run our own application that serves index.html or any
other file on the system when the browser makes a request to it?

We’ll get to that in just a moment. But first, let’s set up our project directory.
It can be located anywhere on your computer – choose wisely.

13

14 CHAPTER 3. RUNNING APPLICATIONS

3.1 Project Home Directory

This is my favorite part. We’re going to choose where our Node application is
going to live on the hard drive.

I know we installed Node globally on the Operating System, but the project will
usually be located in a local folder, like C:\app

Let’s navigate to C:\ drive using cd C:\ command:

Then, use mkdir app to create new directory C:\app and enter it with cd app.

3.2 Running a file via Node

Instead of typing all the code on the command line, we can pass a JavaScript file
for node to execute. Let’s create our first file containing some basic JavaScript.

Create new file index.js as in C:\app\index.js and type following in it:

You don’t have to import or require any modules to use process object.

It is available in the module scope of your application by default.

3.2. RUNNING A FILE VIA NODE 15

Let’s run our index.js file via node to see what happens. Make sure you are in
C:\app and type the following command in cmd:

Figure 3.1: Run: node index.js

node index.js must be executed from same folder where you have index.js file.

The only reason we can run node (actually node.exe) from this folder is because
we added its installation path to our environment variables in an earlier step. So
if you get an error, make sure to complete that step first!

This runs the single line of code console.log(process) from our index.js script.

See the output on the next page.

16 CHAPTER 3. RUNNING APPLICATIONS

3.3 The process Object

In our index.js console.log(process) outputs the contents of process object:

Figure 3.2: Printing out contents of process object.

This Node process object contains all kinds of useful configuration properties.

For example process.versions.v8 tells you V8 engine version it’s running on.

3.4. ADDING PACKAGES TO INDEX.JS 17

3.4 Adding Packages To index.js

Node comes with about 349 packages by default. They are also called modules.

Modules are stored in your node installation folder (C:\Program Files\nodejs
in our case) under node modules.

You might also find them in nodejs\npm folder:
C:\Program Files\nodejs\node modules\npm\node modules\
In browser-side JavaScript code, you can use import / export keywords. But in
addition to that, in node you can use require keyword to add useful modules to
your app from the main NPM repository.

Node assumes path module exists in node modules directory. If not, you can
install it with npm (node package manager) by running: npm install path

The package called path gives us ability to work with URL paths in an easier way.

Once included path.extname method can parse extension part of a filename from
a string. This is a frequent need in server-side programming:

Update index.js file with above code and run node index.js command:

Figure 3.3: Run: node index.js

Figure 3.4: Output: .js

18 CHAPTER 3. RUNNING APPLICATIONS

3.5 Next Steps

We’ve just experimented with running JavaScript files with node, imported a pack-
age, and ran a method. You can run any valid JavaScript file this way.

But there is still a problem. After executing index.js the node process quits, and
control is given back to cmd. This won’t help us run our application server. We
need to build something that runs continuously so we can serve a file every time
someone will access our server from their browser.

3.6. RUNNING APPLICATION SERVER CONTINUOUSLY 19

3.6 Running Application Server Continuously

To continuously listen for connections we need to write server code in index.js.
But don’t worry, the bare bones version is not as difficult as it may sound.

Adding let http = require(”http”) to the very top of index.js is the first step.

When you assign a variable to a package name this way, we make http variable
point to the default object defined in that package. Most packages export a single
object this way, with all the properties and methods already attached to it, so we
can start using them, without worrying how they were implemented!

Likewise, the http object can be used to start listening for requests.

Calling http.createServer makes our node program enter listening state. How
this actually works internally is tied to how your Operating System implements
socket connections. But to get started quick we don’t need to think about that.

Figure 3.5: The bare-bones Node server.

Copy code above into index.js and let’s run it via node index.js command:

Note that we used 127.0.0.1 (It is the same as localhost) with port 3000.

20 CHAPTER 3. RUNNING APPLICATIONS

3.7 Congratulations!

There is now a back-end server running from your computer.

Still don’t believe me? Keep cmd window open and paste http://127.0.0.1:3000
into your browser’s Address Bar. I just did that 3 times and here is the server
receiving the requests:

The request shows up as / because we’re accessing just the IP address. It maps
to the root directory of our application.

Now enter http://127.0.0.1:3000/index.html and watch cmd window:

The file index.html doesn’t even exist yet. All we do is intercept incoming requests
and print them out.

Because we are not sending anything at all back to the browser, you will be stuck
on this page ”waiting for 127.0.0.1...”:

3.7. CONGRATULATIONS! 21

Now you know what happens when you try to go to a website and that little note
in the lower left corner appears!

The bar is spinning and it’s only a matter of time until you get the following:

22 CHAPTER 3. RUNNING APPLICATIONS

Request timed out. But you can terminate the server yourself with Ctrl + C:

Every time you want to terminate the server manually use this combo. This can
become useful if your server is stuck in an infinite loop or processing a long script.

3.8 Serving Files Continuously

We’ve just set up our Node server to listen to URL requests.

To actually serve the requested file, we need to write additional code.

3.8. SERVING FILES CONTINUOUSLY 23

24 CHAPTER 3. RUNNING APPLICATIONS

Update index.js with code from above and request 127.0.0.1:3000/index.html
or localhost:3000/index.html from your browser again.

If index.html exists in the root directory of your project (C:\app) then it will be
served to your browser and its contents will be displayed.

But if the requested index.html doesn’t exist the browser will serve an empty
page by inserting blank <html></html> tags on its own for a clean slate view.

Adding More MIME Types

We now have our Node serving files of .html type. If any other type is requested,
the file will be actually downloaded into the browser, instead of shown in the
display view.

This is because if the file extension is not on our mime list, we serve it as
application/octet-stream which means a binary file download.

In order to add other files (I assume you want at least support for .css, .png, .jpg,
.txt, .js and .json files to start doing anything meaningful with your server) all
you have to do is add them to mime variable:

Conclusion

From here on you will build out the rest of your server architecture. The remainder
of this book will walk you through how to install MySQL and write code for
implementing your own API. You can then use this API to build your application.

Chapter 4

Building The API

So far we learned how to serve requested files. But if you want to build real web
applications, you might want to integrate support for API endpoints.

An endpoint is a URL that follows a special pattern. We can intercept this pattern
and upon its presence we will execute an API command, instead of serving a file.

This API command is likely to establish a database connection and either modify
or fetch some type of data. Our server can return a JSON object containing
requested data.

We will take a look at how to create some API end points for our existing Node
server. And then we will install MySQL and execute some queries. Using this
pattern you can build out the rest of your API.

Here is an example of an API endpoint that gets user info:

Here is an example of an API endpoint that sets user info:

When this type of URL is requested, we will cancel serving the file, run some
server-side commands and return a result.

25

26 CHAPTER 4. BUILDING THE API

4.1 Building Endpoint API

Let’s write our API code.

Place the following code into a separate file api.js. It will be imported into our
main server application from index.js.

Static function API.catchAPIrequest will return true if the request.url matches
our API pattern. We will cancel serving the file as usual in this case.

The static API.parts property stores the parts of the API call in an array. For ex-
ample localhost:3000/api/user/get becomes: [”api”, ”user”, ”get”]. Based
on these values we can tell our server what to do (execute MySQL query, etc.)

Static function API.exec will execute the command.

4.1. BUILDING ENDPOINT API 27

4.1.1 Integrating API class into our server

Now that we have the API class ready, let’s add API functionality to index.js.
The changes are minor, they are highlighted below.

Add the following line to the top of index.js on line 004:

This makes our API class available for use in index.js.

Now go to line 026-027’ish in our current index.js file and add lines in green:

We used boolean result of API.catchAPIrequest to branch out.

Our server can now draw a distinction between an API call and a file request.

28 CHAPTER 4. BUILDING THE API

4.2 Install NPM MySQL Module

Before we move on, make sure to install npm module mysql by executing the
following command in your cmd or Windows Terminal or bash.exe on Windows
(Yes, Windows 10+ has its own Linux-like bash.exe) or Terminal (OSX/Linux):

Figure 4.1: Install MySQL by executing npm install mysql on cmd.

I already have mysql installed, so your output might be a bit different.

You might have to type Y and hit Enter a couple times during mysql installation.

This gives us ability to include mysql as a module in our server-side .js scripts:

4.2.1 Installing MySQL Server

In addition to this, you must have MySQL server running on your system or at
some remote location (such as your web host’s IP address: XXX.XXX.XX.XX). If
you’ve already done that step, you can skip the next section.

If not, the next section will demonstrate how to set up your own database running
either on your localhost or at some domain name.

Chapter 5

Setting Up MySQL Server

You can run a MySQL server directly from your computer on localhost – the
home address of your computer as part of your local development environment.
Or you can run it on a remote server (a paid web host, for example.)

5.0.1 Install MySQL Server Locally on Windows

Remember, you have to install MySQL – the actual program to run on your
computer. But you also have to install the accompanying mysql NPM module so
your Node server can include it using require keyword.

If you want to install MySQL on your computer as part of your local develop-
ment environment, one of the fastest ways to do that is to download it from
https://dev.mysql.com/downloads/installer/

Or you can install MySQL together with the Ampps server. You can download it
from https://www.ampps.com/ Just download it, go through the installer and
in under a few minutes you will have MySQL running.

I won’t go into great detail on pressing Next button on installation screen here.
The process is pretty straightforward.

29

30 CHAPTER 5. SETTING UP MYSQL SERVER

5.0.2 Install MySQL Server on Ubuntu

The apt-get (or simply apt) command is perhaps the most popular, because apt
also identifies dependencies, downloads and installs them, whereas dpkg does not.

This section will walk you through the standard MySQL server configuration on a
Ubuntu server, for no particular reason. It’s just a personal favorite.

In the following images, I already used my Mac Terminal app to log into my hosted
web server in the cloud. But if you are running Ubuntu on your computer, the
steps are exactly the same, except you don’t have to log in to your web host.

To log in to your web host open Terminal on your Mac and execute the command
ssh root@XXX.XX.XX.XX and replace the X’es with your actual remote server
address. Enter password, and you’re in!

Once there, you can start executing the following commands.

Make sure all packages we will install are up to date:

Figure 5.1: sudo apt-get update

This will have your Linux system updated with fresh URLs to latest packages. So
when you install mysql in the next step most recent update will be used.

Install the MySQL server on your system:

Figure 5.2: sudo apt-get install mysql-server

31

Installation will begin and files will start downloading to your hard drive.

At this point you will see a stream of commands flowing on your screen.

Type Y / yes and press Enter if you are ever asked any questions.

Allow incoming and outgoing traffic to/from mysql program:

Assuming mysql installation was successful, you can now use the ufw utility
program (Which stands for Uncomplicated Firewall.)

Figure 5.3: sudo ufw allow mysql

Note, our command starts with sudo which simply runs any program (ufw in this
case) using security privileges of another user.

sudo originally meant superuser do because on older Linux versions it was de-
signed to run only as superuser (usually root). Nowadays, you can use it to
execute commands using any username/password pair on the system. The mean-
ing of sudo acronym was gracefully re-formed substitute user do for said reason.

Uncomplicated Firewall

You can use ufw allow and ufw disallow commands to allow incoming and
outgoing traffic from a program. Without any additional options it is assumed you
are giving full access rights to this program. The ufw command has many other
options, and you can even allow connections on a specific port. Look it up online
if you need the complete documentation.

Figure 5.4: systemctl start mysql (start mysql process)

32 CHAPTER 5. SETTING UP MYSQL SERVER

If you run just the mysql command now, you will enter mysql prompt.

But... it’s important to use mysql -u root -p instead.

This logs you in as root user, which gives you special privileges.

Figure 5.5: mysql -u root -p

You will be prompted for your MySQL root user password. Enter it!

Then you should be greeted with mysql >:

Figure 5.6: mysql -u root -p

Welcome to mysql prompt. This means your MySQL server is running and it’s
ready to receive MySQL commands. Every standard MySQL command you can
execute via code will work in this prompt as well.

33

5.0.3 Show Existing Databases

When mysql was installed it automatically created information schema – the
first ever database added to your MySQL server. It contains additional information
about all your databases. You can query it, but you cannot change anything on it.

You can type SHOW DATABASES; to see all databases that currently exist on
your MySQL server. On my machine, I already created lavacode and myserver:

Figure 5.7: SHOW DATABASES;

34 CHAPTER 5. SETTING UP MYSQL SERVER

5.0.4 Creating A New Database

To create your own database, run CREATE DATABASE database name;

(Don’t forget to end your statement with ; or the mysql prompt will drop to the
next line without executing the command.)

Figure 5.8: CREATE DATABASE myserver;

You can also check current users by running Select User FROM mysql.user;

Figure 5.9: SELECT user FROM mysql.user;

Note that mysql command keywords and table names are case insensitive. You
could have typed either Select User or SELECT user to the same effect!

35

5.0.5 Creating A New MySQL User

In addition to root user, we can create other users by issuing following command:

CREATE USER ’felix’@’localhost’ IDENTIFIED BY ’PassWord55723!’;

But now we also need to give this user access privileges using GRANT command:

GRANT ALL PRIVILEGES ON *.* TO ’felix’@’localhost’;

This gives felix admin-level privileges on all tables in the database (*.*)

Now we have user felix ready to log in to the database via localhost address with
provided password. This is the account you can use in your JavaScript code when
we get to the Chapter 6: Adding MySQL to api.js

We just need to make sure our database is open for remote access. See next page!

36 CHAPTER 5. SETTING UP MYSQL SERVER

5.0.6 Make MySQL Open For Remote Access

Enter nano /etc/mysql/my.cnf in your Linux bash to open your default MySQL
configuration file with nano editor.

Usually /etc/mysql/my.cnf is the main configuration file. But it’s possible that
it might not be, depending on Linux and MySQL version, etc:

If your my.cnf config looks like above, you need to find the actual mysql config-
uration file which should reside in one of the folders specified with !includedir.

Snoop around these folders to find the file with a similar .cnf name. In my case
it was mysqld.cnf, so I entered the following command to edit it:

nano /etc/mysql/mysql.conf.d/mysqld.cnf

37

Note below comments the file starts with [mysqld safe]. This is the recom-
mended way to start MySQL server on Unix. On Windows you will probably have
just [mysqld] in your config file, which may be called either my.ini or my.cfg.
[mysqld safe] tells MySQL server to restart in case of an error, among some other
helpful features. If you see this command you’re in the right MySQL config file.

Hold control, press W, type bind-address and press Enter.

38 CHAPTER 5. SETTING UP MYSQL SERVER

If you are in the right MySQL config file, your cursor will jump to this line:

Comment the line bind-address = 127.0.0.1 by adding # to the front:

Now that the line is commented...

Hold control and press O, then press Enter to save .cnf file:

Type /etc/init.d/mysql start or /etc/init.d/mysql restart in Linux bash.

This will restart the MySQL server using the new configuration file.

Congrats, your server will now accept connections remotely.

This means from now you can log into your MySQL server using a MySQL client
such as Sequel Pro on Mac or MySQL Workbench on Windows, using the login
token pair felix/PassWord557123! we created earlier.

39

Final Words

Whenever you start a new project, if a hosted database is the only option, you will
probably want to open your MySQL database for remote access. This way you
can access it from your localhost environment without having to install MySQL
server on your machine.

However, this is usually considered bad security practice. At one point, you will
want to limit your MySQL database access to localhost only. This means only
your Node server can connect to the database directly.

This still doesn’t prevent database injection attacks.

Injection attacks use your API endpoints to pass actual MySQL query code into
one of the values sent together with the POST or GET requests.

By clever use of quote characters the query can be re-constructed to execute a
different MySQL command which can be virtually anything.

Keep this in mind when writing your endpoint code and generally thinking about
how to secure your database!

Writing MySQL Code

Now that we have our mysql server running and waiting for incoming user connec-
tions, we need to write some code on our Node back-end (index.js) as a starting
point for our MySQL-based API.

In the next chapter of this book we will add new mysql code by starting a connec-
tion to the server and executing a query. From that point on you can extend the
API by implementing the entire CRUD pattern.

CRUD

We already started api.js file earlier in this book, which – at this point – can only
interpret certain URL patterns as API endpoints and cancel serving the file.

But we are still not making any MySQL connections to the server. Nor are we
executing MySQL queries to actually Create, Read, Update or Delete rows –
collectively known as the CRUD API.

Once you implement the CRUD on your server, you will be ready to build out the
rest of your application. Usually the CRUD gives you ability to code pretty much
any feature on the front-end.

40 CHAPTER 5. SETTING UP MYSQL SERVER

5.1 Table Specimen

In order to execute queries on a MySQL database, we need to create a test table.

For examples that follow we will assume that user table already exists.

You can create it via command line, but it is recommended to get good UI-based
database manager software such as Sequel Pro on Mac or MySQL Workbench
on Windows. As your application-data tables begin to evolve editing them from
command line might turn into Hell.

Because our MySQL server is open for remote connection, it’s possible to log in
to it from Sequel Pro using felix account created earlier. If you set up MySQL
server on localhost use that as the Host. Otherwise use your web host’s database
IP address (which very often is the same IP address for your web hosting server.
It makes senes, because technically MySQL is installed on ”localhost” there too.)

5.1. TABLE SPECIMEN 41

Once logged into your favorite MySQL editor, create the user table that looks
similar to the following design:

Perhaps your table can be completely different. But for users at least have a
username and email address columns!

42 CHAPTER 5. SETTING UP MYSQL SERVER

5.1.1 Bird’s Eye View

Before we move on to the next chapter, I want you to take a look at the bird’s
eye view architecture we’ve got going on so far.

This is the mental model you will eventually arrive at after breaking down a simple
Node server into compartments.

Our barebones server requires only http, path, fs and mysql modules.

Note that the mysql object from MySQL package will return result in a separate
process in a callback function. So it’s a bit different from how you would expect
MySQL to work on a PHP server.

If we can find a way to handle the result and write back to the requesting client from
the callback, we can make API calls just as you would expect from Apache / PHP
setup. Think of it as an extra step. This makes Node MySQL API architecture a
bit more challenging, but also more flexible.

Chapter 6

Adding MySQL to api.js

Now that we have our database running either on localhost or at some remote
location, we’re ready to integrate our MySQL code into our server, so that we can
convert our API endpoint calls to MySQL queries.

Go to our app.js file and add lines highlighted in green to the very top of the file
(so that now we will have database and API classes together in the same file).

If you think class database should be Database, go ahead and change it to your
heart’s desires! The only reason it’s in lowercase is because we’re only using static
methods here, and in my opinion database.create looks more elegant.

43

44 CHAPTER 6. ADDING MYSQL TO API.JS

Make sure to replace XX.XX.XX.XXX with your actual web server IP, or if you’re
running Node server locally localhost (or 127.0.0.1).

Replace other XXXXX entries with your actual database username (felix), pass-
word (PassWord55723!) and database name – all of which were set up in the
previous section – or just use your own values.

The static function create() can now be used to create a database connection.

You can call database.create() once from the very top of index.js after require

6.1. ASYNCHRONOUS BACK-END PROBLEM 45

statements. Your server will connect to the MySQL database and you will be ready
to start executing MySQL queries.

Inside static function exec all we do is call connection.query method on our
database connection object.

6.1 Asynchronous Back-End Problem

If you are coming to Node from Apache PHP server, it is inevitable that you will
experience a paradigm shift, when trying to write your own mysql queries.

In PHP, in order to execute a mysql query, all you had to do was write a script
such as get user.php on the back-end.

Then you would use fetch API or a jQuery.ajax to call that file. The result would
be generated as part of the page content and returned inside the callback. This
way you could safely update the front end UI. We used to call this asynchronous
HTTP requests, or ”ajax” calls. It works naturally for updating the front end!

A Node callback doesn’t run in the same process with the function serving the file
to browser. So the file will be served before the mysql query returns! And this is
the fundamental problem we need to solve in order to build a decent API server.

Executing a MySQL query works exactly the same on Node. The result is returned
via a callback function in a separate process. And that’s part of the problem,
because we’re not on front-end anymore.

A callback will often depend on completion of another MySQL query. So we will
also need a way to execute a chain of multiple queries. And this can introduce a
whole new set of problems.

Solution. If we can somehow forge the process of serving the file with the result
we get from mysql query, we’re taking first step toward solving this problem.

You can either use nesting queries or (more elegantly) promises.

46 CHAPTER 6. ADDING MYSQL TO API.JS

6.2 Nesting Queries

First, let’s take a look at what problem we’re trying to solve with nested queries.

Associative Tables

Let’s say you want to store followers of all existing users. You can’t store users
and followers in the same table because they are two completely different types
of data sets.

However, you can store followers in a separate table and ”associate” it with users
by adding userID column to it.

This way when you want to access an entry in followers table you can use the
userID column to look up which user it belongs to.

Nesting Queries

For the reason stated above, you will often need to write chains of nested queries.

To get followers from a user account, first you will retrieve a user from users
table. Then you will retrieve followers associated with that user’s primary key ID.

Because followers table has a link to the user via the user id column, you should
be able to gather a list of followers separately for that individual user.

6.3 Handling Many Connections

Default server configurations start out with some arbitrary connection limits. For
latest versions of MySQL this limit is 151 maximum connections.

If your app connects many users at the same time, this limit will be reached and
your program will cause the famous ”too many connections” error.

Figure 6.1: ER CON COUNT ERROR

6.3. HANDLING MANY CONNECTIONS 47

This is just a MySQL error caused by configuration limits. It doesn’t actually
mean your server can’t handle that many. In general, these limits are set by
default because every time you initiate a connection, a new thread is created.

Creating a new thread process just to serve 1 user will inefficiently use up your
server’s memory resources. Of course, once we no longer need it, this thread is
eventually terminated by our code. But with thousands of users connecting every
other second you are creating anywhere from hundreds to thousands of threads at
the same time hogging the CPU and possibly the hard drive.

When developing your server you might run into configuration limits on your
MySQL database.

To find out the maximum number of allowed connections, enter the mysql prompt
(by typing mysql either on mac or PC – it’s the same command) and enter the
mysql command: show variables like ”max connections”;

Figure 6.2: show variables like ”max connections”;

Don’t forget the semicolon at the end of each mysql command or it will not run.

I’m running set global max connections = 300; to double connection limit:

48 CHAPTER 6. ADDING MYSQL TO API.JS

Figure 6.3: set global max connections = 300;

And if everything went well, running show variables like command should yield the
following result:

Figure 6.4: show variables like ”max connections”;

We’ve just expanded the theoretical number of simultaneous MySQL connections.

Creating MySQL connections is computationally expensive. Outsourcing the server
workload by increasing the number of connections might work but it is still a naive
strategy. And often, just one connection is enough to handle thousands of queries.

Having said this, before increasing the number of connections, make sure your
system has enough resources to handle them.

However, this doesn’t prevent programmers from using connection pools de-
scribed in next section. Connection pools might offer a fair deal of additional
optimization. Just keep in mind, each architectural decision will depend on the
actual purpose of your API server.

6.4. EXECUTING A MYSQL QUERY 49

6.4 Executing A MySQL Query

So far we explored the idea of executing a MySQL query with exec(command)
method residing on our main database class as a static function.

But architecturally, this won’t do any good as far as our API goes. Remember
that on Node a MySQL query returns in a callback function which produces the
query result value away from our main execution thread.

That’s fine if all you want to do is execute a query or two without caring about
sending a response back to the browser.

But if you want to build an API which deals with a series of unique endpoint
calls, you might seriously consider using promises. They can help you to properly
respond to each incoming request with data returned from a MySQL query.

6.4.1 Promises

Promises add one extra layer to the standard callback pattern. When the Promise
returns, it returns a Promise object, instead of the callback function. This Promise
object is not guaranteed to carry a value yet, until it is resolved at a later time,
which is exactly why it’s called a promise. You can use the built-in .then method
on the Promise object to retrieve the results from the MySQL query.

The Promise’s .then method allows us to wait for the result and resolve it soon
as it becomes available even if it happens at a later time.

Using .then method allows you to avoid the nested callback pattern (or at least
reduce its occurence) where you keep nesting a callback within a callback, because
one API call depends on the data returned from the previous one.

Promise-based MySQL query

So what does a promise-based MySQL query call look like in Node?

Let’s take a look at that in the context of entire API endpoint round trip (Which
includes requesting a resource using an API endpoint and responding to it.)

50 CHAPTER 6. ADDING MYSQL TO API.JS

6.4.2 The Round-trip Pattern

Before we dive into source code, let’s look at how it all fits together, starting from
server listener and finally returning a value from MySQL query.

6.4. EXECUTING A MYSQL QUERY 51

6.4.3 MySQL Promise Function

One of the ways to build the function responsible for executing the MySQL query
related to an endpoint call is by wrapping it in a promise and returning the result
using resolve method - just pass payload to it in JSON format. Here is an
example of just the action register user function, but all other actions (login,
tweet, comment, etc.) follow the same pattern:

52 CHAPTER 6. ADDING MYSQL TO API.JS

6.5 Endpoint API Architecture

Below is a diagram displaying the minimum structure of a functioning Node API
server. It’s the same diagram as you’ve just seen above, except in the context of
a concrete API call to execute user login action.

Logging in should be treated as a special API action. It’s the only endpoint that
performs the initial authentication step.

This is where you will take user’s password, encrypt it with an algorithm such as
SHA3, and compare it with the SHA3 password already stored in the database
under password sha3 in SHA3-encrypted format.

The primary purpose of logging in is to obtain an AuthToken. This becomes your
key to perform other authenticated endpoint actions – follow, tweet, retweet,
like, comment, update user settings, etc.

6.6. HELPER FUNCTIONS 53

6.6 Helper Functions

To avoid rewriting redundant code, I wrote these functions that accomplish various
actions you’ll commonly come across when writing your Node API server. Using
them in various places will help reduce clutter and keep your code clean.

identify(target, action)

target argument is database table name (such as user, tweet, etc.) The action
argument is the ”what” you want to do to target (get, update, delete, etc.)

Figure 6.5: Identify an API endpoint request from API.parts. The API.parts
array is available globally. It represents the API endpoint call broken down into 3
parts. If there is a match, the return value is true.

respond(response, content)

The response argument is the response object from the server and content is a
string representing an object in JSON format (to send back to the browser) which
is usually formed by resolve method inside a promise from MySQL function.

54 CHAPTER 6. ADDING MYSQL TO API.JS

json(chunks)

In Node POST data is streamed instead of received as a single object. So we need
this json function that will convert all received chunks into actual JSON object.

Figure 6.6: Form a JSON object from the streamed POST data chunks.

I intentionally keep my function names short and use common names. This way
when putting it all together the code turns out to be so much cleaner, readable
and easy to maintain down the road.

6.7. SENDING POST DATA TO API ENDPOINT 55

6.7 Sending POST Data To API Endpoint

Usually an API endpoint expects additional data sent together with the request.

For example, if we want to get user data for user with user id of 1, we need
to include that user id in the POST request as additional data specified in JSON
format, for example: {"user id": 1};

When you receive the request object, you only get the header data instantly. The
POST data is submitted separately and you need to listen for it using two different
events: ”data” and ”end” because it’s sent as a stream / buffer.

The request.data event tells you that there is POST data incoming. But instead
of sending entire data object, Node streams it in chunks. So you need to put it
together using chunks first. One way of doing that is to create an array and keep
pushing each chunk received in the ”data” event’s callback onto that array.

The request.end event tells you that all chunks of the POST data have been
finished downloading. At this point you would take the chunks array and convert
it to a JSON object.

This is done using Node’s built-in Buffer.concat(chunks).toString() method.
The .toString() method is required to convert binary chunk data to string format.

After this you simply convert the resulting string to a JavaScript object using the
native JSON.parse function. We’ll see the source code for that in just a moment!

If the POST data is short, it is possible to receive only one chunk. But you still
need to intercept it as a stream.

56 CHAPTER 6. ADDING MYSQL TO API.JS

6.8 Streaming POST Data

Let’s look at streaming POST data as an isolated example first:

Going from here we can finish building out the entire round-trip pattern.

(See next page.)

6.8. STREAMING POST DATA 57

Knowing everything we do now, let’s upgrade our API class by adding support for
one endpoint to enable User Registration. This endpoint triggers the function we
wrote earlier: action user register

58 CHAPTER 6. ADDING MYSQL TO API.JS

POST data is not available until request produces ”end” event. This is where we
put the chunks together into actual JSON object using the json helper function.

To add support for more endpoints just follow the same pattern. Place them inside
request.on(’end’)’s callback which ensures POST data finished streaming:

6.9. COMPLETE SOURCE CODE 59

The request and response objects come all the way from initial call to
http.createServer(function(request, response)... in index.js.

6.9 Complete Source Code

To see the complete source code of the Node server we’ve built so far, you can
fork it from the public GitHub repository for this book:

https://github.com/javascriptteacher/node

Note: Before running this app on your localhost (cmd > node index.js) make
sure you already have a running MySQL server with user table in it and you included
MySQL credentials (IP, username, password and database name) in api.js

Note: This is not a complete application, but it has enough scaffold code to get
you started fast. User API is essential to most web applications. The rest of
endpoints will depend on your app.

Note: You should replace md5 with sha3 if you need to ramp up security for
your user passwords. Use npm install sha3 to install the SHA3 module which
also includes Keccak.

After running node index.js you should see index.html at http://localhost:3000

Press on the API endpoint test buttons and watch console.

You can integrate these API calls into your front-end UI.

60 CHAPTER 6. ADDING MYSQL TO API.JS

How To Run The Server

Import GitHub files into your project or copy them into one folder.

Navigate to that folder from command line.

Enter: node index.js and your index.html should be accessible via http://localhost:3000
in your browser.

From here on, it’s up to you how you want to build the rest of the front end!

Chapter 7

Building Scallable Applications

So far we learned how to build an API Node server that uses MySQL to perform
storage and the classic CRUD data operations.

MySQL, MariaDB, MongoDB and other similar software might work well in the
beginning stages of your application, running on a single server.

You will be able to host under 1K - 10K users (or maybe even more) based on
the amount of RAM available, the IO rate of your SSD drive, and how well your
server code is optimized. Fine tuning your server and writing code optimized for
performance can be magical for increasing the number of users that can be
served by a single instance of your server.

But once your server’s maximum bandwidth is exhausted, it will start coming to
a crawl if any more users join and start using your application.

In the olden days, Battle.net running Diablo I and StarCraft I used to work off a
single server with hundreds of thousands of users connected simultaneously. This
is an example of how limited resources encourage efficient code.

It’s not uncommon for web applications of today to be real-time. Additional
thought and engineering must be applied if you want to build large-scale applica-
tions that serve hundreds of thousands or even millions of simultaneous users.

61

62 CHAPTER 7. BUILDING SCALLABLE APPLICATIONS

7.1 Moving To RAM

No modern real-time application (Twitter, for example) uses SQL databases to
serve primary features to their users. The reason is quite simple. When using SQL
for everything it means there is a hard drive operation every time someone makes
a request! This can be an overkill, because you are outsourcing the slowest part
of your system to serve key features of your application.

One solution is to switch to an SSD server. But what if we store all of our data
in RAM instead? This way we can avoid touching the hard drive completely.

Of course, the original data will still be stored on the hard drive. The difference is
that when you launch your Node server, it will be copied into a JavaScript object.

When client requests a certain resource we can simply serve it directly from that
object. It will contain a copy of the data your MySQL database would contain.
But your application will become significantly more efficient.

You will still write this object to the hard drive, so it can permanently store the
most recent data, but not as frequently as you would with a 100% MySQL setup.

Some databases such as MongoDB also implement similar RAM caching features.
But they still may not be optimized for the primary purpose of your application
which only you know. Thus missing the chance of taking advantage of the full
potential of your server’s horsepower.

And just like with anything else, you can either ”install a package,” or install and
configure existing software, or you can learn to write your own code. Without the
latter, you may never be able to understand or develop the skill of building an
extremely efficient system for serving millions of users.

[This content is currently WIP]

7.2 Handle Server Clean Up

The server can exit for many reasons. For example, it can time out based on
default timeout value provided in server settings.

There are a few cases in which your server might exit, either spontaneously as a

7.3. MASTER AND STAGE SERVERS 63

response to an exception, or when Ctrl + C combo is detected.

You might want to do some code clean up when that happens:

Let’s kill database connection every time server exits for any reason.

7.3 Master and Stage Servers

After a production cycle or coding sprint marathon the new code must be deployed
to the main production server so that your customers can take advantage of the
new features. This is your main public application server.

You should probably set up a secondary stage server where you would deploy the
same code. This is important for two reasons: 1] you can show your application to
your client, teammates, investors, friends or others who can test the new version
of the application before the public release, and 2] you can make sure deployment
process doesn’t break the main production server with new unexpected bugs.

The stage server can be used to test integrity of the newly deployed code, without
risking the chance of deploying erroneous code directly to master, losing customers

64 CHAPTER 7. BUILDING SCALLABLE APPLICATIONS

and having a panic attack.

Now you are thinking like a real production engineer!

Both master and stage are nothing more than two versions of your application
running separately in two different locations. So I won’t talk about how to set up
a stage server – the process is exactly the same. The difference is in where you
push your code to. We’ll cover deploying from command line and GitHub.

Index

adding packages, 17
Apache, 2
API, 44, 52, 58
API action function, 52
API class, 27, 58
API endpoint roundtrip, 50
API endpoints, 26
api.js, 43, 58
apt-get update, 30
architecture, 42, 50, 52
auth token, 52
AuthToken, 52

bash.ext, 1
bind-address, 37, 38
building API, 25

client, 42
conecting to database, 40
configuring, 7
CREATE DATABASE

database name;, 34
’localhost’;, 35
CREATEUSER;, 35
CRUD, 39
Ctrl + C, 11

database, 44

endpoint, 52, 58
endpoint roundtrip, 50
executing mysql queries, 44
exit from Node, 11
exit server process, 63

frameworks, 2

grant, 35
grant all privileges, 35

home directory, 14

IDENTIFIED BY ’PassWord’, 35
identify(), 53
Installation, 3
installing mysql npm module, 28
installing mysql server, 28
installing mysql server on Ubuntu, 30
installing mysql server on Windows,

29
installing node on Mac, 4
installing on Windows, 5

json(), 54

launching the server, 15

65

66 INDEX

libraries, 2
localhost, 40

Mac, 4
max connections, 47
mime, 24
mime types, 24
multiple endpoints, 58
my.cnf, 36
MySQL, 43
mysql -u root -p, 32
mysql API, 44
mysql configuration file, 36, 37
mysql connection, 44
mysql grant, 35
mysql grant all privileges, 35
MySQL promise, 52
MySQL query, 44
mysql query, 44
mysql remote access, 36
mysql table example, 41
mysql user password, 35
MySQL user table, 41
mysql user table, 41
MySQL Workbench, 40
mysqld.cnf, 37

nano control-O, 38
nano control-W, 37
nano search, 37
node index.js, 15

on Mac, 4
on Windows, 5

PHP, 2
POST, 55, 56
process object, 16

promise, 52

remote access, 36
request, 58
require mysql, 44
resolve(), 52
respond(), 54
response, 58
run from any directory, 9
running a .js file from node, 14
running applications, 13
running server continuously, 19
running the server, 15

saving mysql .cnf file, 38
SELECT user FROM mysql.user, 34
Sequel Pro, 40
server, 42
server architecture, 50
server exit events, 63
serving files, 22, 42
set up mysql server, 29
setting mysql user password, 35
SHOW DATABASES;, 33
SIGINT, 63
sudo apt-get install mysql-server, 30
sudo apt-get update, 30
sudo ufw allow mysql, 31
systemctl start mysql, 31

table, 40

ufw, 31
ufw allow mysql, 31
uncomplicated firewall, 31
user, 41
user login, 52

Windows, 5

	Node.js
	1 bash.exe
	1.1 Migrating From Apache to Node
	1.2 Node Libraries and Frameworks
	1.3 Running Node Server

	2 Installation
	2.1 Mac
	2.1.1 apt install nodejs

	2.2 Windows
	2.3 Installing Node on Windows
	2.4 Configuring Node Server Globally
	2.5 Enable Node To Run From Any Directory
	2.6 Exit from Node
	2.7 Congratulations!

	3 Running Applications
	3.1 Project Home Directory
	3.2 Running a file via Node
	3.3 The process Object
	3.4 Adding Packages To index.js
	3.5 Next Steps
	3.6 Running Application Server Continuously
	3.7 Congratulations!
	3.8 Serving Files Continuously

	4 Building The API
	4.1 Building Endpoint API
	4.1.1 Integrating API class into our server

	4.2 Install NPM MySQL Module
	4.2.1 Installing MySQL Server

	5 Setting Up MySQL Server
	5.0.1 Install MySQL Server Locally on Windows
	5.0.2 Install MySQL Server on Ubuntu
	5.0.3 Show Existing Databases
	5.0.4 Creating A New Database
	5.0.5 Creating A New MySQL User
	5.0.6 Make MySQL Open For Remote Access
	5.1 Table Specimen
	5.1.1 Bird's Eye View

	6 Adding MySQL to api.js
	6.1 Asynchronous Back-End Problem
	6.2 Nesting Queries
	6.3 Handling Many Connections
	6.4 Executing A MySQL Query
	6.4.1 Promises
	6.4.2 The Round-trip Pattern
	6.4.3 MySQL Promise Function

	6.5 Endpoint API Architecture
	6.6 Helper Functions
	6.7 Sending POST Data To API Endpoint
	6.8 Streaming POST Data
	6.9 Complete Source Code

	7 Building Scallable Applications
	7.1 Moving To RAM
	7.2 Handle Server Clean Up
	7.3 Master and Stage Servers

