

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://university.redislabs.com
http://www.youtube.com/c/Redislabs
https://www.linkedin.com/company/redis-labs-inc/
http://redislabs.com

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis
Limited Edition

by Steve Suehring

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis For Dummies®, Limited Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department
in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub.
For information about licensing the For Dummies brand for products or services, contact Branded
Rights&Licenses@Wiley.com.

ISBN 978-1-119-52080-1 (pbk); ISBN 978-1-119-52083-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the
following:

Development Editor:
Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Executive Editor: Steve Hayes

Editorial Manager: Rev Mengle

Business Development
Representative: Karen Hattan

Production Editor: Siddique Shaik

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
mailto:Branded
Rights&Licenses@Wiley.com
mailto:Branded
Rights&Licenses@Wiley.com

Table of Contents v

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION.. 1

About This Book.. 1
Foolish Assumptions... 1
Icons Used in This Book.. 2
Where to Go from Here.. 2

CHAPTER 1:	 What Is Redis?... 3
Introducing NoSQL.. 3

Defining NoSQL.. 3
Identifying types of NoSQL databases.. 4
Comparing NoSQL and relational databases............................... 5

Seeing Where Redis Fits... 5
Multi-model databases... 6
Data storage... 6
Data structure storage.. 6

CHAPTER 2:	 What Is Redis Used For?.. 7
Understanding the Components of Redis.. 7

The server and the command-line interface................................ 7
The client and drivers.. 8
Databases, memory, and persistence... 8

Identifying How Redis Can Help You... 9
Personalization with session management................................ 10
Social apps.. 10
Search.. 10

Redis in the Real World... 11
Caching.. 11
Large datasets.. 11
Full-text search... 11
Geospatial and time-series data.. 12
Messaging/queuing... 12

CHAPTER 3:	 Using Multi-Model Redis: Data Models,
Structures, and Modules.. 13
Understanding the Redis Data Models... 14

Strings and bitmaps... 14
Lists.. 16
Sets.. 17

vi Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Hashes... 18
Sorted sets.. 19
HyperLogLog.. 20

Patterns and Data Structures.. 21
Pub/sub... 21
Geospatial... 22
Streams... 22

Modules.. 23
Redis Graph.. 23
RediSearch.. 23
Redis TimeSeries.. 24

CHAPTER 4:	 Redis Architecture and Topology.................................. 25
Understanding Clustering and High Availability.............................. 25

Redis Enterprise cluster architecture.. 26
High availability.. 26
Running Redis at scale.. 27
Redis on Flash.. 28

Examining Transactions and Durability.. 28
ACID... 28
Durability.. 29

CHAPTER 5:	 Using Redis Enterprise Cloud and Software......... 31
Understanding Redis Enterprise... 31

Redis Enterprise Software on Docker.. 33
Redis Cloud... 33

Getting Started with Redis Enterprise.. 34
Prerequisites.. 34
Connecting.. 35

CHAPTER 6:	 A Simple Redis Application... 37
Getting Started.. 37

Prerequisites.. 37
Front-end application code.. 38

Creating a CRUD App.. 38
Cars (sets).. 39
Features (lists).. 40
Car descriptions (hashes).. 41

Table of Contents vii

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 7:	 Developing an Active-Active/Conflict-Free
Replicated Data Type Application................................. 43
Getting Acquainted with Conflict-Free Replicated Data Types....... 43

Defining conflict-free replicated data types............................... 44
Looking at how they’re different.. 44
Understanding why and where you need them........................ 44

Working with Conflict-Free Replicated Data Types......................... 45
Getting an overview of the application....................................... 45
Considering the prerequisites.. 45
Starting the containers.. 46
Testing the conflict-free replicated data type............................. 47

Watching Conflict-Free Replicated Data Types at Work................. 48
Setting up the examine code environment................................ 49
Viewing the example with a healthy network............................ 49
Breaking the network connection between clusters................. 51
Viewing the example in a split network...................................... 51
Rejoining the network... 52
Looking at the example in a rejoined network.......................... 53

CHAPTER 8:	 Ten Things You Can Do with Redis............................... 55

Introduction 1

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

NoSQL is a modern data storage paradigm that provides
data persistence for environments where high perfor-
mance is a primary requirement. Within NoSQL, data is

stored in such a way that both writing and reading are fast, even
under heavy load.

Redis is a market-leading multi-model database that brings
NoSQL to organizations both big and small. Redis is open source,
and Redis Enterprise adds several enhancements that are impor-
tant to the enterprise deployments.

About This Book
This book provides a starting point for those new to Redis and
those who have heard about Redis but want to see how it can be
used in their organizations.

The book serves multiple audiences, with subject matter for man-
agers and developers alike. You certainly can read the book from
cover to cover, but I don’t assume that you will. Instead, you can
comfortably read chapters out of order based on your interest in
a particular chapter.

Foolish Assumptions
In writing this book, I assumed that you’re familiar with data-
bases, at least at a basic level. If you’re a developer, you should
have a development environment available on which you can
install things. In later chapters, I show examples using Redis that
also utilize Docker and Github, so having a development environ-
ment available will be helpful.

It’s worth noting that Chapters 6 and 7 are written in such a way
that you can follow along with what’s going on even if you don’t
run the examples yourself.

2 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Icons Used in This Book
Throughout this book, I use the following icons to call your atten-
tion to details that are important:

The Remember icon focuses your attention on an important detail
that you may have otherwise missed.

The Technical Stuff icon marks some extended information that
may not be of interest to all readers. Only the technical need read
the stuff located near these icons.

A helpful little bit of information is all you’ll find marked by the
Tip icon — possibly something that will make your life a little
easier.

Stay away from whatever the Warning icon is warning you against.
When you see the Warning icon, you’ll know that there might be
some danger around.

Where to Go from Here
Redis and Redis Enterprise are quite complex, and this book
only covers the tip of the iceberg. For more information, head to
www.redislabs.com.

http://www.redislabs.com/

CHAPTER 1 What Is Redis? 3

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

»» Introducing NoSQL

»» Seeing where Redis fits

What Is Redis?

This chapter gives an overview of NoSQL, including a look at
types of NoSQL databases such as key/value, document, col-
umn, and graph. The chapter continues with a comparison

of NoSQL to methods for traditional data persistence.

The chapter also introduces Redis, a popular multi-model data-
base server. Redis goes beyond NoSQL database to provide several
advanced capabilities needed by modern applications.

Introducing NoSQL
The term NoSQL is used to describe a set of technologies for data
storage. In this section, I explain what NoSQL is, outline the
major types of NoSQL databases, and compare NoSQL to relational
databases.

Defining NoSQL
NoSQL describes technologies for data storage, but what exactly
does that mean? Is NoSQL an abbreviation for something? I answer
these and other pressing questions in this section.

Depending on whom you ask, NoSQL may stand for “not only
SQL” or it may not stand for anything at all. Regardless of any

4 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

disagreement over what NoSQL stands for, everyone agrees that
NoSQL is a robust set of technologies that enable data persistence
with the high performance necessary for today’s Internet-scale
applications.

SQL is an abbreviation for Standard Query Language, a standard
language for manipulating data within a relational database.

Identifying types of NoSQL databases
There are four major types of NoSQL databases — key/value,
column, document, and graph — and each has a particular use
case for which it’s most suited.

The following sections go into greater detail on the four types of
NoSQL.

Key/value
With a key/value storage format, data uses keys, which are identi-
fiers that are similar to a primary key in a relational database. The
data element itself is then the value that corresponds to the key.

An example of a key/value pair looks like this:

"id": 12319054

In this example, "id" is the key while 12319054 is the value that
corresponds to that key.

Column
With a column-oriented data store, data is arranged by column
rather than by row. The effect of this architectural design is that it
makes aggregate queries over large amounts of data much faster
to process.

Document
Document data storage in NoSQL uses a key as the basis for
item retrieval. The key then corresponds to a more complex data
structure, called a document, which contains the data elements for
a given collection of data.

CHAPTER 1 What Is Redis? 5

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Graph
Graph databases use graph theory to store data relations in a
series of vertices with edges, making queries that work with data
in such a manner much faster.

Comparing NoSQL and
relational databases
Regardless of the type of NoSQL database, the patterns and tools
that you use to work with data is different from the patterns and
tools that you typically find with a relational database. As you just
saw, the paradigm for storage and arrangement of the data typi-
cally requires a rethink of how applications are created.

Relational databases connect data elements through relations
between tables. These relations become quite complex for many
applications, and the resulting queries against the data become
equally complex. The inherent complexity leads to performance
issues for queries.

Many traditional databases include query tools and software
to directly manipulate data. With NoSQL, most access will be
programmatic only, through applications that you write using
the tools and application programming interfaces (APIs) for the
NoSQL database.

Relational databases have somewhat less flexibility than a multi-
model database such as Redis. Whereas a relational database
thrives when data is consistent and well structured, Redis and
NoSQL thrive on the unstructured data that is found in today’s
modern applications while also providing the flexibility to struc-
ture data as needed.

Seeing Where Redis Fits
Redis is a NoSQL database and yet much more. Redis is a multi-
model database enabling search, messaging, streaming, graph,
and other capabilities beyond that of a simple data store.

6 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Multi-model databases
Multi-model databases provide a way to interact with data
regardless of its underlying data model.

Redis provides full multi-model functionality through Redis Mod-
ules. The use of Redis as a multi-model database enables greater
flexibility for application developers within an organization.

Data storage
Redis keeps data in memory for fast access and persists data to
storage, as well as replication of in-memory contents for high-
availability production scenarios.

When discussing data storage, the concept of durability becomes
important. Durability is the ability to ensure that data is available
in the event of a failure of a database component.

Redis supports multiple modes for ensuring durability, accommo-
dating most data structures and environment-specific requirements

Data structure storage
Redis supports several data structures. In fact, it may be helpful
to think of Redis as a data structures store rather than a simple
key/value NoSQL store.

Supported data structures include

»» Strings

»» Lists

»» Sets

»» Sorted sets

»» Hashes

»» Bit arrays

»» Streams

»» HyperLogLogs

Each data structure has a different use case or scenario for which
it is best suited. Beyond these data structures, Redis also supports
the Publish/Subscribe (PubSub) pattern and additional patterns
that make Redis suitable for modern data-intensive applications.

CHAPTER 2 What Is Redis Used For? 7

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

»» Understanding the components of Redis

»» Identifying how Redis can help you

»» Looking at a real-world example

What Is Redis Used For?

This chapter begins an in-depth examination of Redis.
Included in the chapter is a look at the various Redis
components and how those components can help you. The

chapter concludes with an example of how Redis is used for
production applications.

Understanding the Components of Redis
Like other server software, Redis has several components working
together to provide robust solutions. Understanding these com-
ponents and the overall architecture of Redis is the focus of this
section.

The server and the command-line
interface
Redis runs as server-side software, primarily on the Unix-based
operating systems like Linux and macOS and also as a Docker
container on Microsoft Windows. Redis server is downloaded and
installed in just a few steps and then is ready for use.

The installation process for Redis is fully documented in the Quick
Start guide available at https://redis.io/topics/quickstart.

https://redis.io/topics/quickstart

8 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The server listens for connections from clients — either program-
matically or through the command-line interface (CLI). Like the
CLI for other database servers, the CLI for Redis enables direct
interaction with the data on the server.

The client and drivers
Numerous client libraries are available supporting many pro-
gramming languages. It is through these clients and drivers that
you interact programmatically with data found on a Redis server.

For example, if your organization uses Python for its program-
ming language of choice, you’ll probably integrate with Redis
through the redis-py package, though you have the opportunity
to use more than a dozen other Python-related packages for Redis
integration, too.

The clients and drivers are typically shared under an open-source
license, though the license varies by project. See https://redis.
io/clients for more information.

I won’t list all 200 or so supported languages, but featured client
libraries for several popular languages include the following:

»» Java: Three popular clients include Jedis, Lettuce, and
Redisson, all of which serve slightly different needs.

»» Node.js: The recommended client for Node.js is node_redis.

»» C#: Two popular clients include ServiceStack.Redis and
StackExchange.Redis.

»» PHP: PHP has several clients with PHP, but Predis is
recommended.

»» C: hiredis is the official Redis client for the C language. Also
see hiredis-vip for cluster-related C language support.

Databases, memory, and persistence
There is no formal database creation step with Redis. Like data-
base creation, there isn’t a formal table creation step necessary
with Redis either. The SET command is used to create data within
the current database.

https://redis.io/clients
https://redis.io/clients

CHAPTER 2 What Is Redis Used For? 9

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Those familiar with formalized database creation and definition
may be uncomfortable with the seemingly informal process of
database creation and data handling. However, it’s through this
flexibility that the true power of Redis is found.

Data is stored in random access memory (RAM) on the Redis server.
This means that as data is added, additional RAM is used. Redis on
Flash (see Chapter 4) provides a method for supplementing RAM
with flash-based memory. Redis writes the contents of the data-
base to disk at varying (and configurable) intervals depending on
the amount of data that changes during the interval. Persisting
data to disk ensures durability in the event of a software or hard-
ware failure that renders the server unavailable. Other means for
providing durability, such as clustering for high availability, are
common with Redis in a production environment.

Identifying How Redis Can Help You
This section examines a few popular use cases for Redis. Redis
has the necessary capabilities to meet user expectations for per-
formance and features. For example, benchmarks show that Redis
Enterprise in an ACID configuration is able to perform more than

CREATING AND QUERYING DATA
The SET command adds a key to the database in Redis. For example,
to create a key for various pieces of furniture in your living room, you
might do this:

SET furniture:couch:color green

SET furniture:recliner:color brown

SET furniture:chair:color: tan

Alternatively, you could retrieve all keys with the KEYS command:

KEYS furniture*

Note: The KEYS command used in the preceding example is not typi-
cally recommended for production usage. Use it for debugging only.

10 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

500,000 operations per second with sub-millisecond latency and
can also achieve 50 million operations per second with the same
performance on only 26 compute nodes. The performance of
Redis coupled with search features like autocomplete and result
highlighting makes the entire user experience better.

Personalization with session
management
A session is loaded when a user logs in or when he’s using the
application in order to track his activity. By nature, session-
related data needs to be readily available, with low latency to meet
performance requirements that users expect.

Redis is a great fit for such applications because data is available in-
memory and data is structured based on its use in the application.

Social apps
End users expect real-time or near-real-time performance from
social apps. From chat to follows to comments to games, social
apps present a challenge for disk-based data stores. An in-memory
data store gives the performance necessary for these applications.

Several features of Redis make implementation of social app
features possible:

»» Intelligent caching

»» Pub/sub pattern for incoming data

»» Job and queue management

»» Built-in analytics

»» Native JSON-handling

JavaScript Object Notation (JSON) is a structured data format. By
being native JavaScript, JSON-formatted data can be used directly
in an app without needing to be transformed into another format.

Search
Allowing users to search data is challenging. Allowing users to
search data while providing high performance is even more diffi-
cult. With other, slower data stores, secondary indexes frequently
need to be added in order to provide adequate performance.

CHAPTER 2 What Is Redis Used For? 11

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis in the Real World
This section looks at some common use cases for Redis related to
e-commerce. For example, many e-commerce sites provide search
capabilities and need to do so in a high-performance environment
using autocomplete. Although this certainly isn’t an exhaustive
list, it does highlight several popular ways to use Redis.

Caching
Providing fast response time is more important than ever. How-
ever, responding quickly, even under high demand, can be resource
intensive. This is often solved with caching.

Redis can be used as a means to cache data between the appli-
cation and the backend data store, such as another relational or
NoSQL database. Doing so frees up the database for other opera-
tions while also enabling user-friendly fast response.

Large datasets
Redis handles caching well because of its native data types and its
efficient use of memory.

The performance of Redis means that recommendations and
customer analytics can be done in real time.

The use of Redis on Flash makes large dataset analysis cost-
effective. In this use case, Redis Enterprise Flash is used to extend
RAM.

Full-text search
The RediSearch module is used to extend the capabilities of Redis.
RediSearch can work up to 500 percent faster than stand-alone
search engine products and includes features like scoring, filter-
ing, and query expansion.

Automatic suggestions based on the search are provided with
RediSearch, too. All of this is done with the performance that you
would expect from Redis.

RediSearch stores data in RAM and can be scaled onto multiple
Redis instances.

12 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Geospatial and time-series data
Redis, with its native geo, sorted set, and hash and streams data
types is an excellent choice for geospatial and time series data.
These data types might be used for location-based recommenda-
tions and promotions.

Another geospatial and time-series use case is collection of data
from Internet of Things (IoT) devices. These devices and related
sensors are constantly generating data and doing so in a manner
where their location matters. For example, a traffic sensor noting
that the flow of traffic has slowed might be able to relay the mes-
sage to open additional lanes or that there is another issue that
needs attention.

Messaging/queuing
A related use of Redis is handling fast-moving data. In the preced-
ing example, if you have data being generated by thousands and
millions of sensors, that needs to be analyzed and processed. It
can be collected, streamed, and ingested by Redis using its native
publish/subscribe mechanism.

CHAPTER 3 Using Multi-Model Redis: Data Models, Structures, and Modules 13

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

»» Understanding the primary data models

»» Utilizing patterns and data structures

»» Working with modules

Using Multi-Model Redis:
Data Models, Structures,
and Modules

Data models represent how the data is stored within a
database. An implication of choosing a data model is that
your application will then be tied to that model.

In the past, relational models didn’t reflect the application or
problem domain very well. Instead, relational models emphasize
other aspects of data storage. With the rise of NoSQL technologies
like Redis, the data model can be a reflection of the application
itself.

A multi-model database like Redis enables the data to be rep-
resented for multiple use cases simultaneously. This means that
the data can be used in the manner most appropriate for the
application.

14 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Understanding the Redis Data Models
Using a data store of any kind requires making decisions about
how to represent the data within the data store. This model then
controls how data is added to the database and how it’s retrieved.

Data is stored in Redis using keys. Keys can be just about anything
because they’re binary safe. For example, you could use an image
as a key. Most keys are simple strings, though.

Redis has a variety of commands for working with data of dif-
ferent types. A couple notable commands are encountered in
this section, including SET and GET. The SET command creates or
changes a value that corresponds to a given key. The GET com-
mand retrieves the value associated with the given key.

It’s worth mentioning that values are overwritten with the SET
command. That means if you call SET twice for the same key, the
last value will be the one that is stored and retrieved.

The values that correspond to a given key can be formatted in
many ways to create a data model specific to the needs of the orga-
nization. This section examines the primary data models in Redis.

Strings and bitmaps
The simplest value type in Redis is a string. A value can be added
to the database with the SET command. When using the SET
command, a key and a value are the minimum requirements in
order to create the entry. For example, to create a key called user
with a value of steve, you simply need to execute this command
from the Redis CLI:

> SET user steve

Even though double quotes were used for this string value, they
aren’t strictly necessary when the value is a single word. With
that, a simple string value of steve has been stored in the data-
base and can then be retrieved with the GET command:

> GET user

Doing so retrieves the following value:

"steve"

CHAPTER 3 Using Multi-Model Redis: Data Models, Structures, and Modules 15

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

There are numerous other commands that can be executed, and
some make sense in a certain context. For example, a common
way to use simple string values is as a counter. In these cases,
commands like INCR (short for increment) can be used. Consider
this example:

SET logincount 1

In the command, a new key called logincount is created and set
to the value of 1. Then you call INCR on that key:

INCR logincount

When INCR is executed, the new value is returned immediately:

(integer) 2

Of course, you can always retrieve the value with the GET command:

GET logincount

Doing so returns the following:

"2"

There are numerous other commands to manipulate and work
with string and stringlike data in Redis, though you can’t use
commands intended for numeric data on string data.

Closely related to strings are bitmaps, which are a form of string
storage. Using a bitmap, you can represent many data elements
that are simply on (1) or off (0). This is useful for operations
where you only need to know those two possible values, such as
whether a user is active or inactive. Because it can be only one of
two values, you can represent that data efficiently.

The largest size for a single string value is 512MB. This means
that you can store 232 possible values inside of one string value
in Redis. This size limit will be increasing and may have already
increased by the time you’re reading this. Check the latest Redis
documentation for the current size limit for string values.

16 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

There are commands specific to working with bitmaps available
in Redis. These commands include SETBIT and GETBIT, which are
used to create or change a value and retrieve a value, respectively.
Other commands include BITOP and BITFIELD.

Lists
Lists are a way to store related data. In some contexts, lists are
called arrays but in Redis, a list is a linked list, which means oper-
ations to write to the list are very fast. However, depending on
where in the list the item is located, its performance is not as fast
for read operations. Although not always appropriate because of
repeated values, a set (discussed later) can sometimes be used
when read speed is crucial.

Lists use one key holding several ordered values, and values are
stored as strings. You can add values to the head or tail (called
“left” and “right” in Redis) of a list and you retrieve values by
their index. Values within a list can repeat, meaning you may have
the same value at a different index within the list.

Pushing a value onto a list is accomplished with the LPUSH and
RPUSH commands. These commands place values onto a list either
on the left (or head) or to the right (or tail) of the list. For exam-
ple, creating a two-item list looks like this:

LPUSH users steve bob

The list now contains two items, indexed beginning at 0. An
individual item can be retrieved using the LINDEX command. For
example, retrieving the first item in the list looks like this:

LINDEX users 0

Retrieving the second item looks like this:

LINDEX users 1

If you try to retrieve an index that doesn’t exist, you’ll receive
(nil) as output.

All items or just a slice of items can be retrieved with the LRANGE
command. The LRANGE command expects to receive the first and

CHAPTER 3 Using Multi-Model Redis: Data Models, Structures, and Modules 17

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

last indexes to retrieve, by number. If you want to retrieve all
items in the users list, it looks like this:

LRANGE users 0 -1

Note the use of the -1 as the second value. The -1 means “to the
end of the list.”

The output from the LRANGE command for the users table is as
follows:

1) "bob"
2) "steve"

Also notably, because LPUSH was used, the last item, bob, becomes
the top of the list, or item 1. If this list had been created with
RPUSH, then bob would be the bottom of the list, or item 2.

Sets
From an application standpoint, sets are somewhat like lists, in
that you use a single key to store multiple values. Unlike lists,
though, sets are not retrieved by index number and are not sorted.
Instead, you query to see if a member exists in the set. Also unlike
lists, sets cannot have repeating members within the same key.

Redis manages the internal storage for sets. The result is that you
don’t work with set values in the same way that you do lists. For
example, you can’t push and pop to the front and back of a set like
you can with a list.

Adding a value to a set is done with the SADD command:

SADD fruit apple

Listing all members of a set is done with the SMEMBERS command:

SMEMBERS fruit

Given that the key called fruit exists, the command returns a list
of all members in that set. In this case, the only item returned is
as follows:

1) "apple"

18 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can determine if a given value exists in a set with the
SISMEMBER command. For example, to see if a value called "apple"
exists in the fruit key, the command is as follows:

SISMEMBER fruit apple

When the member exists in the set, an integer 1 is returned. If the
member does not exist, an integer 0 is returned.

Hashes
Hashes are used to store collections of key/value pairs. Contrast a
hash with a simple string data type where there is one value cor-
responding to one key. A hash has one key, but then within that
structure are more fields and values.

You might use a hash to store the current state of an object in an
application. For example, when storing information about a house
for sale, a logical structure might look like this:

houseID: 5150
numBedrooms: 3
squareFeet: 2700
hvac: forced air

Representing this with a Redis hash looks like this:

HSET house:5150 numBedrooms 3 squareFeet 2700 hvac
"forced air"

Individual fields within the overall house:5150 hash are retrieved
with the HGET command. To retrieve the numBedrooms field value
looks like this:

HGET house:5150 numBedrooms

The result is as follows:

"3"

CHAPTER 3 Using Multi-Model Redis: Data Models, Structures, and Modules 19

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Sorted sets
Sorted sets are used to store data that needs to be ranked, such as
a leaderboard. Like a hash, a single key stores several members.
The score for each of the members is a number. For example, if
you were tracking the number of followers for a group of users,
the data might look like this:

User Followers:

steve: 31

owen: 2

jakob: 13

Within Redis, this data can be re-created as a sorted set with the
following command:

ZADD userFollowers 31 steve 2 owen 13 jakob

The ZRANGE command is used to retrieve the resulting sorted set.
Like the LRANGE command, which is used to retrieve values from
a list, the ZRANGE command accepts the beginning and ending
number for retrieval. For example, to retrieve all members of a
sorted set looks like this:

ZRANGE userFollowers 0 -1

When that command is executed, the members are retrieved but
not the corresponding scores. To retrieve both the member names
and their scores, add the WITHSCORES argument to the command:

ZRANGE userFollowers 0 -1 WITHSCORES

When that command is executed against the previously entered
data set, the result is:

1) "owen"
2) "2"
3) "jakob"
4) "13"
5) "steve"
6) "31"

20 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

As you can see from the output of ZRANGE, the members and their
scores are ranked by score value, lowest to highest. You can also
retrieve the members and their scores in reverse order (that is,
highest to lowest) with the ZREVRANGE command:

ZREVRANGE userFollowers 0 -1 WITHSCORES

The score for an individual member can be incremented by any
valid number with the ZINCRBY command. For example, to incre-
ment the username jakob by 20, the command is as follows:

ZINCRBY userFollowers 20 jakob

The resulting score is returned, so in this case the returned value
represents the original 13 followers plus 20 more:

"33"

The result of the ZRANGE or ZREVRANGE will reflect the change to
the number of followers, too.

Another way of working with data in a sorted set is to use the
ZRANK command to determine where within the sorted set a given
member resides.

HyperLogLog
HyperLogLog is a specialized but highly useful data type in Redis.
A HyperLogLog is used to keep an estimated count of unique
items. You might use the HyperLogLog data type for tracking an
overall count of unique visitors to a website.

The HyperLogLog data type maintains an internal hash to deter-
mine whether it has seen the value already. If it has, then the
value is not entered into the database.

The PFADD command is used to both create a key and add items to
a HyperLogLog key:

PFADD visitors 127.0.0.1

If this is the first time that the value 127.0.0.1 has been seen in the
visitors key, then an integer value of 1 is returned to indicate a

CHAPTER 3 Using Multi-Model Redis: Data Models, Structures, and Modules 21

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

successful addition to that database. A 0 is returned if the value
already exists.

The PFCOUNT command is used to provide an estimate of the num-
ber of unique items within a HyperLogLog.

Patterns and Data Structures
I’ve introduced the basic data types in Redis. But there are also
common ways to use Redis, incorporating the data types that
you’ve already seen. I examine some of these patterns in this
section.

Pub/sub
Redis can also act as a fast and efficient means to exchange mes-
sages in a publisher/subscriber (pub/sub) pattern. When used in
such a way, a publisher creates a key/value pair and zero or more
clients subscribe to receive messages.

Creation of the channel to which clients will subscribe is as simple
as using the PUBLISH command to create a value. For example,
the following command creates or publishes to a channel called
weather with a message of temp:85f:

PUBLISH weather temp:85f

The message is published to the channel called weather regard-
less of whether there are any clients subscribed. If there is a client
subscribed, the client will receive a message like the following:

1) "message"
2) "weather"
3) "temp:85f"

Clients subscribe to a channel with the SUBSCRIBE command. It’s
assumed that the client would know the format of messages and
be able to parse the messages received correctly. Messages are
opaque to Redis.

22 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Like other data types in Redis, pub/sub publisher channels can be
split to create a hierarchical structure by convention. For exam-
ple, creating a weather channel by zip code might look like this:

PUBLISH weather:54481 temp:85f

Clients can then subscribe to the specific zip code for weather
updates. Clients can also subscribe in a wildcard pattern to all
weather sub-keys, with the PSUBSCRIBE command:

PSUBSCRIBE weather:*

Geospatial
Geospatial indexing is a common pattern used for encoding data
that relies on latitude and longitude. This pattern and resultant
data makes working with spatial data very easy and very fast.
After it’s added to the data set, you can calculate things like the
distance between two data points using built-in functions.

Creating a data set of locations of radio towers might look like
this:

GEOADD towers -89.500 44.500 tower1
GEOADD towers -88.000 44.500 tower2

You can then calculate the distance between those two towers
using the GEODIST command:

GEODIST towers tower1 tower2

The GEODIST command returns values in meters by default, but
this can be changed to other measures, such as miles:

GEODIST towers tower1 tower2 mi

Streams
Streams are best thought of as similar to the pub/sub pattern, but
with even more power. With pub/sub, data that is published is
never stored by the publisher.

Stream consumers create a unique name or identifier for them-
selves. Because stream publishers store past messages, new

CHAPTER 3 Using Multi-Model Redis: Data Models, Structures, and Modules 23

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

consumers can request to receive all available messages. Addi-
tionally, messages can be marked as acknowledged by a given
client subscriber.

Streams are created through the XADD command, with other com-
mands similar to that of sorted sets such as an XRANGE command.
You can also view pending messages and perform other powerful
operations on streams.

Modules
Redis also has several modules available that further enhance the
capability of Redis. This section examines three such modules:
Redis Graph, RediSearch, and Redis Time Series.

Redis Labs offers numerous official modules other than the mod-
ules discussed in this section. Some of the official modules include
ReJSON, ReBloom, and Redis-ML. Redis has a healthy ecosystem
of third-party modules available as well.

Redis Graph
Redis Graph is a module that implements a graph database within
Redis. Graph databases provide a method for implementation of
graph theory through data. A common example when discussing
graph database use cases revolves around identifying relation-
ships between social media users.

With a graph database, each endpoint or node can have zero or
more properties. Nodes are then connected to each other through
an edge. Like nodes, edges can also have properties of their own.

RediSearch
Another highly useful module is RediSearch. RediSearch is a full-
text search engine that features document storage within Redis
while enabling high-performance search capabilities.

The RediSearch module enables weighted search results, the use of
Boolean logic, autocomplete functionality, and several other com-
mon features.

24 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

RediSearch can also perform concurrent queries and concurrent
indexing. This further enhances performance.

Redis TimeSeries
Storing time-series data is another common task for a database
and is also common for NoSQL databases. The Redis TimeSeries
module is a high-performance way to store and work with data
that is ordered by time.

Data stored with the TimeSeries module can be best thought of
like a list but with the added bonus of having a timestamp associ-
ated with the data. Time-series-based data facilitates easy meta-
data retrieval and summarized data queries (such as finding the
minimum or maximum timestamp, counting, and so on).

CHAPTER 4 Redis Architecture and Topology 25

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

»» Understanding clustering and high
availability

»» Examining transactions and durability

Redis Architecture
and Topology

This chapter focuses on Redis in a production environment,
including those elements that organizations need in order
to run a highly available enterprise-grade database.

The chapter begins with a look at clustering capabilities of Redis
and Redis Enterprise before looking at high availability. Finally,
the chapter wraps up with a discussion of transactions and dura-
bility in Redis.

Much of the chapter highlights the features that Redis Enterprise
brings to a production deployment.

Understanding Clustering
and High Availability

A production environment typically requires a certain level of
performance and redundancy. Database performance is fulfilled
through a number of means, including clustering and sharding.

26 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A database shard is a portion of a larger database. Pieces of a data-
set are split among multiple servers, with each server responsible
for a subset of the data. Doing so splits the load among the servers.

Redis Enterprise cluster architecture
Redis Enterprise has clustering capabilities built in. With a Redis
cluster, portions of a database are shared throughout a set of
servers. Each server within a cluster is responsible only for its
own set of data.

Cluster management is performed at a different layer of the Redis
cluster architecture. This means that requests can be served as
quickly as they would be if the server was not running in a cluster.

Within a Redis cluster, a given server is referred to as a node. Each
node can be a primary (master) or a secondary (slave) node.

The Redis Enterprise cluster consists of several components:

»» Open Source/Data Layer: Data is stored and managed
at this layer and is the same core as a single instance of
open-source Redis.

»» Cluster Manager: The Cluster Manager is responsible
for management of overall cluster health and monitoring,
including rebalancing, resharding, provisioning, and de-
provisioning nodes, and so on.

»» REST API: The secure REST API is used for management of
the cluster.

»» Zero-Latency Proxy: Each node of the cluster uses a proxy
to provide stateless and multi-threaded communication
between client and node.

High availability
Providing high availability in the case of network splits involves
running three replicas of the same data simultaneously. In the
event of a network failure, the two remaining nodes that can
communicate become authoritative.

Organizations using open-source Redis to achieve high availabil-
ity find the expense of RAM makes doing so costlier and overall

CHAPTER 4 Redis Architecture and Topology 27

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

more complex. Redis Enterprise provides high availability with-
out needing a third live replica — instead, it uses a third, much
smaller server for quorum resolution in the case of network splits.
Providing high availability in this way avoids the need for expen-
sive RAM, which, in any scenario, means direct cost savings.

Redis Enterprise uses in-memory replication between the master
and slave. Replication with Redis Enterprise is optimized even
more than the open-source Redis. Benchmarks show that Redis
Enterprise replication is 37 percent faster than the standard
open-source Redis.

Behind the scenes, Redis Enterprise monitors both at the node
level and at the cluster level. Node monitoring ensures that pro-
cesses related to node performance are working correctly. If a
node becomes unavailable or unresponsive, the node watchdog
begins the shard failover process.

Cluster monitoring with Redis Enterprise watches the health of
nodes from an overall view and monitors for network health as well.

Redis Enterprise also supports multi-AZ (availability zone)
deployments.

Running Redis at scale
From an architectural perspective, there are several characteris-
tics found in a fully scaled and production-level Redis deployment.
The key to running Redis at scale is using Redis Enterprise. Redis
Enterprise makes enterprise-level deployments easy by providing
many of the components needed for such an architecture.

Redis Enterprise supports both scaling vertically and scaling
horizontally, and the choice is not mutually exclusive. Production
environments use scaling to share the load or increase compute
capability based on demand.

Scaling up is used when there is available capacity within a server
or cluster while scaling out deploys more servers or compute
resources and shards the data onto those newly deployed servers.

Redis Enterprise can also scale proxies when necessary. This typi-
cally isn’t required because proxies are deployed in a redundant
configuration and are highly performant on their own. However,
when extra capacity at the proxy level is required, Redis Enter-
prise can do so.

28 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis Enterprise also allows for read replicas using a feature
called replica-of. The replica-of feature creates another database
that can then also be sharded and configured differently than the
original.

Redis on Flash
Redis on Flash, available with Redis Enterprise, enables the data-
base to be stored not only in RAM but also on dedicated flash
memory such as a solid-state drive (SSD). With Redis on Flash,
keys are maintained in RAM while certain values are placed in
flash. Specifically, hot values are maintained in RAM and warm
values in flash. Redis intelligently chooses which values to place
in flash with the implementation of a least-recently-used (LRU)
algorithm.

Examining Transactions and Durability
Having the ability to undo a data write in the event of a problem
is key to providing reliable data. This section examines durability
and transaction support in Redis.

ACID
Atomicity, consistency, isolation, and durability (ACID) describes
overall architectural properties of transactional systems, as typi-
cally seen with databases, including NoSQL.

Redis supports all capabilities required to be ACID-compliant.
This support is accomplished through various methods:

»» Atomicity: Redis provides transaction-related commands,
including WATCH, MULTI, and EXEC. These commands ensure
that operations on the database are indivisible and
irreducible.

»» Consistency: Only permitted writes are allowed to be
performed through the validation provided by Redis.

»» Isolation: Being single-threaded, each single command or
transaction using MULTI/EXEC is thereby isolated.

»» Durability: Redis can be configured to respond to a client
write to confirm that a write operation has been written
to disk.

CHAPTER 4 Redis Architecture and Topology 29

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Using Redis with the confirmation for writes can affect perfor-
mance. The next section discusses durability in more detail.

Durability
There are two methods for providing data persistence in Redis:

»» Append-Only File (AOF): AOF was described in the
preceding section. With AOF and the “every-write” setting,
Redis replies to the client after the “write” operation has
been successfully written to disk, guaranteeing durability.

AOF applies to every shard of the database and can be
configured to write to the database file every second or on
every write. The obvious consequence of writing to the disk
on every database write operation is slower performance.
The benefit is ensuring durability.

Redis Enterprise handles AOF different than the open-source
version of Redis. With Redis Enterprise, AOF is optimized to
increase performance. One of the ways this is done is by
configuring AOF only from the slave replica, which means
the master sees unhindered high performance.

A LOOK AT ACID
ACID is a concept that stretches back many years across multiple iter-
ations of database architectures. ACID describes fundamental charac-
teristics that are needed for enterprise database systems:

•	Atomicity: The ability to ensure that a write or change to data is
either fully written to the database or is not committed at all. In
other words, no partial writes that could lead to inconsistencies in
the data.

•	Consistency: The data is correct both before and after a transac-
tion occurs.

•	 Isolation: Helps to ensure consistency by requiring concurrent
transactions to be separate from each other.

•	Durability: Data persistence that ensures that when a transaction
is complete, it can be retrieved in the event of a system failure.

30 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Snapshot: Snapshots are a point-in-time copy of the
database. Snapshots apply to all shards within a database
and are used primarily for the aforementioned durability
rather than as a backup.

Both AOF and snapshot, along with the enhancements available
to each through Redis Enterprise, help to ensure that transactions
and, indeed, the data remain durable and available at all times.

Another method for providing a level of durability is through
in-memory persistence, which can be both safer and faster.

CHAPTER 5 Using Redis Enterprise Cloud and Software 31

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

»» Understanding Redis Enterprise

»» Getting started with Redis Enterprise

Using Redis Enterprise
Cloud and Software

Redis Enterprise provides an enhanced, enterprise-ready
implementation of Redis. This chapter explains Redis
Enterprise and the enhancements that make it appealing for

so many production workloads today.

Understanding Redis Enterprise
In a modern enterprise environment, performance and reliability
are requirements of all applications. Redis Enterprise is the over-
all name for the enhanced versions of Redis that are focused on
the needs of enterprise users.

There are two primary means to deploy Redis Enterprise:

»» Redis Enterprise software can be deployed locally within
your data center or cloud provider.

»» Redis Enterprise can be used as a fully managed and hosted
service, Redis Cloud, available in all major cloud providers
(even inside virtual private clouds, or VPCs).

»» Redis Enterprise can be deployed in a multi-cloud or hybrid
on-premises/cloud architecture.

32 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Both methods for deployment result in a high-performance
implementation of Redis. The difference between the two is
whether you manage the underlying platform or the platform is
managed by Redis Labs.

Regardless of how Redis Enterprise is deployed, you receive the
same benefits:

»» Seamless scaling

»» Always-on availability with instant automatic failover

»» Multi-model functionality through modules such as
RediSearch, ReJSON, ReBloom, and others

»» Full durability and snapshots

»» Stellar performance

Redis Enterprise also implements geographical distribution in an
active-active manner.

CAP THEOREM, ACTIVE-ACTIVE,
AND CRDT
CAP Theorem states that it is impossible for a network-based service
(such as a server or data shared across a network) to simultaneously
provide more than two out of the following three guarantees: consis-
tency, availability, and partition tolerance. Ideally, you would be able
to provide consistency and availability of data in a way that was toler-
ant of network partitions, but in reality, doing so means making trade-
offs between the three properties.

Redis Enterprise works with CAP Theorem properties. To ensure avail-
ability, Redis Enterprise replicates or copies data across multiple data
centers so that an incoming request can be handled by any of the
data centers.

Redis Enterprise must also be able to maintain consistency while
keeping data available. Redis Enterprise uses conflict-free replicated
data types (CRDTs) to maintain consistency and availability of data.
Because CRDTs are available across data centers, data within Redis
Enterprise is able to handle network partitions, or divisions within
the network that might otherwise make some or all of the data
inaccessible.

CHAPTER 5 Using Redis Enterprise Cloud and Software 33

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Active-active refers to a replication or application model that dis-
tributes requests across multiple data centers. Requests can be
serviced by any data center, and conflict resolution is used for
both simple and complex data types.

Redis Enterprise Software on Docker
Docker makes it easy to develop, test, and deploy an application
by placing applications into distinct containers from which they
can be deployed and tested.

Redis Enterprise can be run inside a Docker container. To do so,
you must first install Docker. After Docker has been installed,
executing a simple command will run Redis Enterprise within a
container. For example, on a Linux system, here’s the command
to run Redis Enterprise in a container:

$ docker run -d --cap-add sys_resource --name rp
-p 8443:8443 -p 12000:12000 redislabs/redis

Docker will then download the necessary components and begin
running Redis inside of the container.

Though using Docker is beyond the scope of what I cover in this
book, it’s worth noting that the command shown launches Docker
with its run subcommand. The run subcommand accepts several
options, a few of which are used here to make Docker go into the
background (-d), add Linux capabilities (--cap-add), and then
execute a container named rp (--name), exposing two ports: 8443
and 12000 (-p).

Redis Cloud
Redis Cloud is a hosted and managed version of Redis in the cloud.
With Redis Cloud, you choose the cloud provider from a list of
supported providers like Amazon Web Services (AWS), Google
Cloud, and Microsoft Azure. Redis is then deployed and managed
for you, so that you can focus on development. It’s also available
in VPC environments of major cloud providers.

Redis Cloud features high availability, seamless scaling without
any downtime, and high performance with linearly scaling per-
formance. It’s fully monitored, and there is even a free tier.

34 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis Cloud’s minimal startup cost and effort make it an excellent
solution for development environments. It’s also ideal for pro-
duction environments, thanks primarily to its low monthly cost,
high availability, and high performance.

Getting Started with Redis Enterprise
Getting started with Redis Enterprise means selecting a platform,
either hosted through Redis Cloud or downloadable software. This
section looks at those first steps to begin using Redis Enterprise.

Regardless of which method you choose to get started, you need to
sign up at Redis Labs. You can do so at https://redislabs.com.

Prerequisites
After you have an account at Redis Labs, you can choose which
method you’ll use for installing Redis Enterprise: using the cloud
or locally. If you’re looking to test Redis Enterprise through Redis
Cloud, you’ll still want to install the command-line interface (CLI)
so that you can access the instance after it has been deployed.

For downloadable software, you should have at least 2GB of ran-
dom access memory (RAM) and 10GB of hard-disk space available
for a non-production deployment.

Installing Redis Enterprise locally means selecting one of the
supported platforms for Redis Enterprise. The choices include the
following:

»» Ubuntu

»» Red Hat

»» Oracle Linux

»» AWS AMI

»» Docker on Mac or Windows

After you’ve downloaded it, you’ll be able to install Redis Enter-
prise on the chosen platform.

https://redislabs.com/

CHAPTER 5 Using Redis Enterprise Cloud and Software 35

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Connecting
Connecting to an instance typically means using the CLI in order
to test the connectivity, create an initial database, and so on. The
CLI is accessed through the redis-cli command that is installed
with the server. The CLI provides a set of commands that enable
you to work with a Redis server. Similar to a CLI that you might
encounter in Terminal on macOS or Linux or the Command Prompt
in Windows, the Redis CLI is the work environment that is used
for executing commands when not working programmatically.

If you’re accessing a cloud-based instance, you’ll need to install a
CLI to access Redis Enterprise.

When connecting to a remote instance (an instance that isn’t located
on the same server as the CLI), the command looks like this:

redis-cli -h <hostname> -p <port>

The <hostname> is the name of the host to which you’re connect-
ing, and the <port> parameter is the port number of the instance.

CHAPTER 6 A Simple Redis Application 37

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

»» Getting started

»» Creating a CRUD app

A Simple Redis
Application

In this chapter, you take a look at a basic application created to
run on Node.js and demonstrating basic create-read-update-
delete (CRUD) operations. The application is not meant to show

everything that is possible with Redis; instead, it demonstrates
the foundations to help kickstart your development.

Getting Started
This section looks at what you need to begin building a Redis
application in Node.js. If you don’t want to set up your own devel-
opment environment, you can build this application using the free
plan available with Redis Cloud.

Prerequisites
A simple Redis application has been coded and made available on
GitHub. The application stores information about cars as an exam-
ple and is meant to show how CRUD operations can be achieved
with Redis as a storage engine. The application is built in Node.js.
Follow the instructions in the GitHub repo at https://github.
com/RedisLabs/redis-for-dummies/ to set up the application.

https://github.com/RedisLabs/redis-for-dummies/
https://github.com/RedisLabs/redis-for-dummies/

38 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Front-end application code
The primary location for the front-end code is the file called
index.js. This file sets up the application for our use. The
index.js file uses a Node.js HTTP server that has routes backed
by Redis calls.

The remaining code in index.js is used to route or direct clients
to the proper location.

Even though the file is index.js, there is no default web page for
this application.

Creating a CRUD App
This section looks at usage for three of the common Redis data
types: sets, lists, and hashes. As you work through this section,
you might use MONITOR from the Redis command-line interface
(CLI) in order to see what’s happening.

Within the code repository, you’ll find a shell script called
sample.sh. The sample.sh script creates sample data that will be
used in this section. To execute sample.sh, you need to have the
Redis server and the Node.js application running.

When you run the script, it will generate sample data records by
running curl commands against the Node.js server. You’ll receive
output like the following, though the values for the id field in the
car descriptions may be different:

Adding cars

Added a ford-explorer
Added a toyota im
Added a saab 93 aero
Added a family truckster
Done adding cars.

Adding car descriptions

{"id":"cjhvatfuc00005mfj2zycewid"} <-- Added SUV

CHAPTER 6 A Simple Redis Application 39

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

{"id":"cjhvatfv500015mfj8nzqk34c"} <-- Added
Hatchback

{"id":"cjhvatfvo00025mfjyfxuyp6o"} <-- Added Sedan
{"id":"cjhvatfw700035mfjaupal85f"} <-- Added

Station Wagon
Done Adding car descriptions.

Adding features

Added power-steering
Added climate-control
Added car-play
Added disc-brakes
Done adding features.

With the sample data created, you can look at how to query each
data type with curl.

I describe the script throughout the rest of the chapter. In gen-
eral terms, the application maps verbs from REST calls to Redis
commands.

You can add your own sample data or use data from another
source for these examples, too.

Cars (sets)
The sample data script added a few cars to the Redis instance.
These were added as a set.

Sets are unsorted collections of unique members. To access them,
you query to see if a given value exists.

Retrieving the members of a set through the Node application is
accomplished by sending a GET HTTP request to the cars URL. This
results in an SMEMBERS call to the car set. Here’s an example:

curl http://localhost:3000/cars/

The SMEMBERS command is executed by the server when you make
that request. Then you receive the following response:

["family-truckster","saab-93-aero","toyota-
im","ford-explorer"]

40 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Other operations are possible, too. For example, an HTTP PUT
method (executing a SADD Redis command) was used to create
the original data (in the sample.sh script). You can also execute
an HTTP DELETE method (executing an SREM Redis command) to
remove a member from the set.

Features (lists)
Another collection of data added by the sample script was
features — that is, features you might find in a car. The features
were added as a list. Reading data using the application means
sending a GET request. In this case, retrieving all features looks
like this:

curl http://localhost:3000/features/

Behind the scenes, the LRANGE command is executed with 0 and
–1 for the indices, thereby retrieving all values. So, the Redis
command is

LRANGE features 0 -1

Because lists are numerically indexed, you can retrieve based
on position within the list. The application supports both start
and end index, beginning with 0 for the first item in the list. For
example, retrieving all the items beginning with the third item
looks like this:

curl http://localhost:3000/features/2

As before, the LRANGE command is executed on the server. Instead
of beginning with the 0 index, this time the command begins with
index 2 and continues to the end of the list, with the Redis com-
mand being:

LRANGE features 2 -1

You can also set an end index. Retrieving only the third item looks
like this:

curl http://localhost:3000/features/2/2

CHAPTER 6 A Simple Redis Application 41

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This time, LRANGE is executed with the same beginning and end-
ing index (2). The full Redis command is

LRANGE features 2 2

Create, read, update, and delete operations are supported for lists
in this application. To create, send a POST request (using LPUSH);
to update, send a PUT request (LSET); and to delete, use the DELETE
method (LREM).

Car descriptions (hashes)
The sample script added data to the hash data structure in the
Redis instance. When the data was added, the first argument in
the ZSCORE/HGETALL is the key, containing the unique ID. Work-
ing with hash data means creating and requesting that unique ID.

Retrieving the details of a car by its ID looks like this:

curl http://localhost:3000/cardescriptions/
cjhvatfuc00005mfj2zycewid

The unique ID will be different for your database.

When an ID is used in this manner, the ZSCORE command is exe-
cuted by the server against cardescriptions:collection. This
is followed by the HGETALL command. In all, it looks like this:

ZSCORE cardescriptions:collection
cjhvatfuc00005mfj2zycewid

HGETALL cardescriptions:details:cjhvatfuc00005mfj2
zycewid

The keys used in this chapter are very large. Large keys work well
in heavily used applications in order to help avoid overlapping
keys. However, you can use more compact unique IDs in your
application.

You can see all unique IDs by sending this request:

curl http://localhost:3000/cardescriptions/

42 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Behind the scenes, the ZREVRANGEBYSCORE command is executed
when the call to /cardescriptions/ is made, so this will show all
the items in the sorted set. The entire command is

ZREVRANGEBYSCORE cardescriptions +inf -inf

Like other data types in this application, you can also create
(ZADD/HMSET), patch (HMSET), and delete data (UNLINK/ZREM) stored
in hashes.

CHAPTER 7 Developing an Active-Active/Conflict-Free Replicated Data Type Application 43

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

IN THIS CHAPTER

»» Understanding conflict-free replicated
data types

»» Getting started with conflict-free
replicated data types

»» Seeing conflict-free replicated data types
in action

Developing an Active-
Active/Conflict-Free
Replicated Data Type
Application

In this chapter, you develop an application using the Active-
Active mode of Redis Enterprise implemented via conflict-free-
replicated data types (CRDT). I start by defining CRDTs and how

they differ from other replication methods.

Getting Acquainted with Conflict-Free
Replicated Data Types

This section provides some background on CRDTs. I start by
defining them. Then I explain how CRDTs differ from other rep-
lication methods. Finally, I offer some thoughts on where and
when you’ll use CRDTs.

44 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Defining conflict-free replicated
data types
CRDTs are a special data structure that enables multiple copies
of data to be stored across multiple locations in such a way that
each copy can be updated independently. The conflict-free part is
due to the fact that this data type can resolve any inconsistencies
without intervention.

Looking at how they’re different
CRDTs differ from other replication methods in that there doesn’t
need to be extensive communication between copies — or nodes —
involved in a CRDT. When a conflict between two nodes occurs,
the condition for choosing which data to use is not based on the
wall clock; instead, it’s based on a mathematically derived set
of rules.

Conflicts are resolved at the database level with CRDTs and are
consensus free. This resolution is done without user intervention.

The end result is that CRDTs are faster and provide fault toler-
ance. Application development is also easier, making the process
quicker.

Understanding why and where
you need them
CRDTs are valuable for high-volume data that requires a shared
state. Additionally, CRDTs can use geographically dispersed serv-
ers in order to reduce latency.

The geographic dispersal, also called geolocal servers, enables high
availability even during network or regional network failures.
Disaster recovery also occurs in real time.

Several data types can be used as CRDTs in Redis, including
hashes, strings, strings-as-counters, sets, sorted sets, and lists.

CHAPTER 7 Developing an Active-Active/Conflict-Free Replicated Data Type Application 45

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Working with Conflict-Free
Replicated Data Types

In this section, you begin to build the application. You install pre-
requisites in this section and have a good understanding of where
you’re headed with the application.

Getting an overview of the application
To set up a demonstration in a reasonable amount of time and
with a reasonable amount of effort, you’ll be creating an envi-
ronment that simulates a much larger architecture. The overall
premise is to use Docker containers for the simulation.

The application being demonstrated runs as a single node and
also works great with CRDTs. The end result shows how CRDT-
based data converges.

The application simulates a geo-replicated topology to reduce
latency. It’s worth noting that replication occurs across clusters
and not across individual shards or nodes.

Considering the prerequisites
The application uses Docker to make it easy to see the active-
active nature of the application and of Redis itself. You need to
install Docker before continuing.

The installation of Docker is beyond the scope of this chapter, but
you can find instructions at https://docs.docker.com/install.

The application discussed in this chapter also requires the use
of multiple Redis Enterprise instances, each of which runs in a
Docker container. The application requires more resources than
those required for the preceding chapter. For example, the appli-
cation in this chapter requires 8GB of RAM for each instance of
Redis Enterprise.

The example application also uses Node.js. You may have already
installed Node.js as part of Chapter 6, but if not, you can get more
information on installing Node.js at https://node.js.org.

https://docs.docker.com/install
https://node.js.org/

46 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Finally, the files for the application itself are contained on
GitHub and can be found at https://github.com/RedisLabs/
redis-for-dummies. Within that repository, the directory /crdt-
application/ contains the files for the application in this chapter.

Starting the containers
To start Docker and the Redis Enterprise containers, run create_
redis_enterprise_clusters.sh.

You may need to make the script executable, depending on your
platform. This typically entails running chmod 700 <scriptname.
sh> from a command prompt or terminal window.

Running the script creates two network (one for each cluster) and
two clusters:

»» 172.18.0.2: Runs Redis on port 12000 and an administrative
port of 9443. The administrative port is forwarded to port
8443 on your local development environment.

»» 172.19.0.2: Runs Redis on port 12002 and an administrative
port of 9445. The administrative port for this cluster is
forwarded to port 8445 on your local development
environment.

The create_redis_enterprise_clusters.sh script also con-
nects the two networks so that they can communicate.

The creation script takes a few minutes to execute, depending
largely on the amount of resources such as CPU and RAM avail-
able and whether Docker needs to download the image. You can
test whether the instances are up and running by pointing a web
browser to http://localhost:8443 and http://localhost:8445.
If you see a setup prompt, the instances are working.

Do not follow the prompt. You’ll set up the clusters automatically
using a script.

Although there is a user interface for creating the clusters, you’ll
do so automatically via the command line. To do so, run setup_
redis_enterprise_clusters.sh.

This script will configure two clusters in each Docker container.
The clusters have the sample username of r@r.com and a pass-
word of test.

https://github.com/RedisLabs/redis-for-dummies
https://github.com/RedisLabs/redis-for-dummies
http://localhost:8443/
http://localhost:8445/

CHAPTER 7 Developing an Active-Active/Conflict-Free Replicated Data Type Application 47

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Do not use these clusters in a production environment or in an
environment that may be otherwise compromised. The clus-
ters should be used for testing only and have very little security
hardening.

The final step to get the clusters configured is to run join_redis_
enterprise_clusters_crdb.sh. You may need to change the per-
missions on this script, just as with the previous scripts executed
in this section. See the tip earlier in this section for more details.

The join_redis_enterprise_clusters_crdb.sh script accesses
the Redis API to join the clusters. This same task could be accom-
plished through the user interface, too, but using the API makes
it easy.

The final outcome of the script will be to join the two clusters in a
conflict-free replicated database spanning both clusters.

Testing the conflict-free
replicated data type
The first step in testing the CRDB is to connect to each cluster.
Execute the following command to connect to the first cluster:

redis-cli -p 12000

This command invokes the Redis command-line interface (CLI)
and attempts to connect using port 12000.

If you receive a > prompt, you’re connected and you can execute
the following commands within the CLI:

SET test hi
EXIT

Now connect to the second cluster. To do so, use the redis-cli
command, but this time use port 12002, like so:

redis-cli -p 12002

As before, if you’re connected, you’ll see a > prompt.

48 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

When you’re done within the CLI, type EXIT to end your CLI ses-
sion. This command was included in the previous example but is
not shown in subsequent examples.

Retrieve the previously set test key and then change the test key
by running the following commands:

GET test
"hi"
SET test howdy

Finally, connect back to the first cluster and retrieve the test key:

redis-cli -p 12000

At the prompt, retrieve the test key:

GET test
"howdy"
EXIT

If these tests are successful, the clusters are communicating
properly.

Watching Conflict-Free Replicated
Data Types at Work

The code example illustrates a simulated Internet of Things (IoT)
configuration that tracks cars as they enter a monitored street.
In the configuration, multiple sensors are simulated in order to
report cars passing by to track which roads they’re on and which
position marker on the road they’ve passed.

In the simulation, each sensor can be connected to the geographi-
cally closest cluster to achieve the lowest latency.

As simulated cars pass a marker, they’re idempotently added to a
set using the SADD command and then added to a hash that con-
tains an incrementing counter (HINCRBY) to indicate how many
markers have been passed.

CHAPTER 7 Developing an Active-Active/Conflict-Free Replicated Data Type Application 49

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Setting up the examine
code environment
The sample code requires its own environment installed through
Node.js. It’s worth noting that the example code shows just one
way to use CRDTs. There are numerous others, and the example
commands can usually be executed whether in cluster mode or
when using them on a single cluster or even in a single instance.

The instructions here give the most common example command.
See the README file within the example code for specific details,
updates, and notes about the example code.

From within the /cdrt-application/ directory, execute the
following:

npm install

Viewing the example with
a healthy network
Behind the scenes, several Redis commands are executed by the
code. These commands add a set and perform other related com-
mands in order to achieve the desired result.

The example code runs the following commands:

SADD all-roads {passed road from command line}
MULTI
SADD roads:{passed road from command line} {passed

plate}
HINCRBY road-marker:{passed road from command

line} {passed plate} 1
EXEC

You can view the commands in real time on the first cluster by
executing the following from within another window:

redis-cli -p 12000
> MONITOR

Connect to the second cluster by changing the port to 12002
instead of 12000 in order to see the commands being executed on
the second cluster.

50 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The client can be connected to either cluster. On the first cluster,
execute the following:

node car.js marker 91street --plate 1234
--connection ./rp2.json

{
 "entered": "91street",
 "onRoadPreviously": false,
 "marker": 1
}

On the second cluster, execute the following:

node car.js marker 91street --plate 1234
--connection ./rp1.json

{
 "entered": "91street",
 "onRoadPreviously": true,
 "marker": 2
}

Note how the incremented value is coordinated across the clusters.

Now add another car:

node car.js marker 118avenue --plate 4567
--connection ./rp2.json

node car.js marker 118avenue --plate 4567
--connection ./rp1.json

Viewing the roads on either cluster shows synchronization in
action. To view the roads, run the following command:

node car.js viewroads --connection ./rp1.json
{
 "118avenue": {
 "4567": "2"
 },
 "91street": {
 "1234": "2"
 }
}

CHAPTER 7 Developing an Active-Active/Conflict-Free Replicated Data Type Application 51

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

node car.js viewroads --connection ./rp2.json
{
 "118avenue": {
 "4567": "2"
 },
 "91street": {
 "1234": "2"
 }
}

As you can see from the results, both clusters are the same and,
thus, synchronized. Behind the scenes, the viewroads command
executes the following:

SMEMBERS all-roads

Then it executes the following for each member of the road set:

HGETALL road-marker:{a member from the previous
set}

Breaking the network connection
between clusters
In this section, you use Docker to simulate a break in the network
connection. Execute the following script, after making it execut-
able if necessary:

split_network.sh

After that command has been executed, the client software from
the example code is still communicating with each cluster but
the clusters themselves are no longer communicating with each
other.

Viewing the example in a split network
Now you’ll execute commands to demonstrate how the example
operates in a split network configuration.

52 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Run the following:

node car.js marker 118avenue --plate 4567
--connection ./rp1.json

node car.js marker 91street --plate 1234
--connection ../rp2.json

Then run viewroads:

node car.js viewroads --connection ./rp1.json
{
 "118avenue": {
 "4567": "3"
 },
 "91street": {
 "1234": "2"
 }
}
node car.js viewroads --connection ./rp2.json
{
 "118avenue": {
 "4567": "2"
 },
 "91street": {
 "1234": "3"
 }
}

Now that the two networks are split, the clusters no longer main-
tain synchronization with each other. Updates can continue on
each cluster while the network is split. However, the clusters can
rejoin at any time and no updates will be lost when the clusters
rejoin.

Rejoining the network
Reconnect the networks with the rejoin_network.sh script,
making it executable if necessary:

rejoin_network.sh

CHAPTER 7 Developing an Active-Active/Conflict-Free Replicated Data Type Application 53

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

It will take a few seconds for the clusters to discover that they
are reconnected, after which time the clusters will reconnect and
synchronize without any intervention. All data will be converged
using CRDT semantics, and no data will be lost.

Looking at the example in
a rejoined network
Now let’s look at the example in a network that has been recon-
nected after a split.

Execute the following:

node car.js viewroads --connection ./rp2.json
{
 "118avenue": {
 "4567": "3"
 },
 "91street": {
 "1234": "3"
 }
}
node car.js viewroads --connection ./rp1.json
{
 "118avenue": {
 "4567": "3"
 },
 "91street": {
 "1234": "3"
 }
}

Now pass a marker on each road to see how the data is synchro-
nized again:

node car.js marker 91street --plate 1234
--connection ./rp2.json

{
 "entered": "91street",
 "onRoadPreviously": true,
 "marker": 4
}

54 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

node car.js marker 91street --plate 1234
--connection ./rp1.json

{
 "entered": "91street",
 "onRoadPreviously": true,
 "marker": 5
}

As previously stated, the example shown in this chapter is just
one of many ways that a CRDT can be used. The underlying and
essential elements of Redis are the same when using them stand-
alone or with a single cluster.

CHAPTER 8 Ten Things You Can Do with Redis 55

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 8
Ten Things You Can
Do with Redis

T
his whole book is about what Redis can do for you. This
chapter lists ten things you can do with Redis.

A single Redis cluster can be used to do any of these ten things,
regardless of whether it’s a transactional or analytical workload.

»» Use it as your primary database. Redis is not just a NoSQL
database. It goes well beyond NoSQL to implement numer-
ous features for today’s enterprise customers. Redis is more
than simple key/value storage — it provides multiple data
models and multiple methods to access data.

Redis can be utilized by the entire application stack within an
organization.

»» Cache most frequently used pieces of data. Load data
from slower data sources into Redis and provide near-
instant response times. Redis keeps data in random access
memory (RAM) to make retrieval fast.

»» Use it for session storage. Session storage requires very
fast response times, both for writing data as users progress
through an application and for reading that information back.

56 Redis For Dummies, Limited Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis is an excellent fit for session storage due to its native
data-type storage that mirrors the kind of storage needed
for storing session data.

»» Decouple services. Redis streams and the publish/subscribe
pattern enable service decoupling. Services can write to and
read from Redis streams or can publish and subscribe send
messages using Redis as the facilitator of the pub/sub pattern.

»» Provide rate limiting. Redis can be used to rate-limit users
and endpoints. The high-performance, real-time nature of
Redis means that tracking can be done in real time along
with the users and endpoints.

»» Ingest data quickly. Redis is known for its capability to work
with large amounts of data at speed. Consuming or taking in
data in large quantities and then processing it or handing it
off for further processing makes Redis a great choice for
data ingest.

»» Build real-time leaderboards. Native data types that promote
sorting and counting operations enable Redis to be used as
the back end for real-time leaderboards.

»» Build a store finder. Redis includes GEO-based data types
that natively handle geospatial data like latitude and
longitude calculations. A store finder is another use case
where Redis is the compelling solution.

»» Perform analytics efficiently. Data that needs to be
processed can be stored in Redis in a compact manner. Data
that may take terabytes in another storage medium can be
processed in such a way that it requires significantly less
resources when you use Redis. For example, probabilistic
data structures can be used that then help to maintain
counts, frequencies, and percentiles very efficiently.

»» Index large amounts of data. Redis handles large amounts
of data well. As an organization and its application portfolio
grow, so does the amount of data. Redis has the flexibility
and extensibility (through modules) to store data for multiple
consumers and the performance and efficiency to store large
amounts of data for established and new organizations alike.

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://redislabs.com

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page

	Copyright Page
	Table of Contents

	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Where to Go from Here

	Chapter 1 What Is Redis?
	Introducing NoSQL
	Defining NoSQL
	Identifying types of NoSQL databases
	Comparing NoSQL and relational databases

	Seeing Where Redis Fits
	Multi-model databases
	Data storage
	Data structure storage

	Chapter 2 What Is Redis Used For?
	Understanding the Components of Redis
	The server and the command-line interface
	The client and drivers
	Databases, memory, and persistence

	Identifying How Redis Can Help You
	Personalization with session management
	Social apps
	Search

	Redis in the Real World
	Caching
	Large datasets
	Full-text search
	Geospatial and time-series data
	Messaging/queuing

	Chapter 3 Using Multi-Model Redis: Data Models, Structures, and Modules
	Understanding the Redis Data Models
	Strings and bitmaps
	Lists
	Sets
	Hashes
	Sorted sets
	HyperLogLog

	Patterns and Data Structures
	Pub/sub
	Geospatial
	Streams

	Modules
	Redis Graph
	RediSearch
	Redis TimeSeries

	Chapter 4 Redis Architecture and Topology
	Understanding Clustering and High Availability
	Redis Enterprise cluster architecture
	High availability
	Running Redis at scale
	Redis on Flash

	Examining Transactions and Durability
	ACID
	Durability

	Chapter 5 Using Redis Enterprise Cloud and Software
	Understanding Redis Enterprise
	Redis Enterprise Software on Docker
	Redis Cloud

	Getting Started with Redis Enterprise
	Prerequisites
	Connecting

	Chapter 6 A Simple Redis Application
	Getting Started
	Prerequisites
	Front-end application code

	Creating a CRUD App
	Cars (sets)
	Features (lists)
	Car descriptions (hashes)

	Chapter 7 Developing an Active-Active/Conflict-Free Replicated Data Type Application
	Getting Acquainted with Conflict-Free Replicated Data Types
	Defining conflict-free replicated data types
	Looking at how they’re different
	Understanding why and where you need them

	Working with Conflict-Free Replicated Data Types
	Getting an overview of the application
	Considering the prerequisites
	Starting the containers
	Testing the conflict-free replicated data type

	Watching Conflict-Free Replicated Data Types at Work
	Setting up the examine code environment
	Viewing the example with a healthy network
	Breaking the network connection between clusters
	Viewing the example in a split network
	Rejoining the network
	Looking at the example in a rejoined network

	Chapter 8 Ten Things You Can Do with Redis
	EULA

Redis

